Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4770-4782.DOI: 10.16085/j.issn.1000-6613.2022-1979
• Materials science and technology • Previous Articles Next Articles
LIN Xiaopeng(), XIAO Youhua(), GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan()
Received:
2022-10-24
Revised:
2022-11-27
Online:
2023-09-28
Published:
2023-09-15
Contact:
XIAO Youhua, FU Shenyuan
林晓鹏(), 肖友华(), 管奕琛, 鲁晓东, 宗文杰, 傅深渊()
通讯作者:
肖友华,傅深渊
作者简介:
林晓鹏(1998—),男,硕士研究生,研究方向为生物基智能软材料。E-mail:2020604021025@stu.zafu.edu.cn。
基金资助:
CLC Number:
LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC)[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782.
林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1979
1 | 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(7): 2664-2671. |
HE Yin, ZHOU Yiying, LIU Hao, et al. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2664-2671. | |
2 | 李仲明, 李斌, 武思蕊, 等. 基于3D打印技术制造柔性传感器研究进展[J]. 化工进展, 2020, 39(5): 1835-1843. |
LI Zhongming, LI Bin, WU Sirui, et al. Research progress in manufacturing flexible sensors based on 3D printing technology[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1835-1843. | |
3 | ZOU Zhanan, ZHU Chengpu, LI Yan, et al. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite[J]. Science Advances, 2018, 4(2): eaaq0508. |
4 | DU Xiaohui, NIU Zhikai, LI Rongjin, et al. Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin for ambulatory electrocardiography sensing[J]. Journal of Materials Chemistry C, 2020, 8(35): 12257-12264. |
5 | RUS D, TOLLEY M T. Design, fabrication and control of soft robots[J]. Nature, 2015, 521 (7553): 467-475. |
6 | XIAO Youhua, MAO Jie, SHAN Yejie, et al. Anisotropic electroactive elastomer for highly maneuverable soft robotics[J]. Nanoscale, 2020, 12(14): 7514-7521. |
7 | XIAO Youhua, CHEN Zheqi, MAO Jie, et al. Self-strengthening dielectric elastomer of triblock copolymer with significantly improved electromechanical performance under low voltage[J]. Macromolecular Materials and Engineering, 2021, 306(5): 2000732-2000740. |
8 | WU Guan, WU Xingjiang, XU Yijun, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications[J]. Advanced Materials, 2019, 31(25): e1806492. |
9 | TABASSIAN R, KIM Jaehwan, NGUYEN Van Hiep, et al. Functionally antagonistic hybrid electrode with hollow tubular graphene mesh and nitrogen-doped crumpled graphene for high-performance ionic soft actuators[J]. Advanced Functional Materials, 2018, 28(5): 1705714-1705723. |
10 | DELAEY J, DUBRUEL P, VAN VLIERBERGHE S. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials, 2020, 30(44): 1909047-1909070. |
11 | Qiji ZE, KUANG Xiao, WU Shuai, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4): e1906657. |
12 | KUENSTLER A S, CHEN Yuzhen, Phuong BUI, et al. Blueprinting photothermal shape-morphing of liquid crystal elastomers[J]. Advanced Materials, 2020, 32(17): e2000609. |
13 | RIHANI R T, STILLER A M, USORO J O, et al. Deployable, liquid crystal elastomer-based intracortical probes[J]. Acta Biomaterialia, 2020, 111: 54-64. |
14 | AZIMI S, GOLABCHI A, NEKOOKAR A, et al. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant[J]. Nano Energy, 2021, 83: 105781-105791. |
15 | FU Haiyan, LONG Zuchang, LAI Mingxuan, et al. Quantum dot hybridization of piezoelectric polymer films for non-transfer integration of flexible biomechanical energy harvesters[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29934-29944. |
16 | SHAHINPOOR M, KIM K J. Ionic polymer-metal composites: I. Fundamentals[J]. Smart Materials and Structures, 2001, 10(4): 819-833. |
17 | GAO Fei, WEILAND L M. The streaming potential method for modeling the electromechanical responses of ionic polymer transducers[C]Proc SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, 2009, 7292: 72924H. |
18 | FENG Guohua, CHEN Rihong. Fabrication and characterization of arbitrary shaped μIPMC transducers for accurately controlled biomedical applications[J]. Sensors and Actuators A: Physical, 2008, 143(1): 34-40. |
19 | FENG Guohua, LIU Kim-Min. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance[J]. Sensors, 2014, 14(5): 8380-8397. |
20 | LU Chao, ZHAO Lei, HU Yimin, et al. A molecular-regulation strategy towards low-voltage driven, multi degree of freedom IPMC catheters[J]. Chemical Communications, 2018, 54(63): 8733-8736. |
21 | HE Qingsong, YANG Xue, WANG Zhongyuan, et al. Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages[J]. Journal of Bionic Engineering, 2017, 14(3): 567-578. |
22 | YU Min, HE Qingsong, YU Dingshan, et al. Efficient active actuation to imitate locomotion of gecko's toes using an ionic polymer-metal composite actuator enhanced by carbon nanotubes[J]. Applied Physics Letters, 2012, 101(16): 163701-163707. |
23 | LEE Sangjun, HAN Man Jae, KIM Seong Jun, et al. A new fabrication method for IPMC actuators and application to artificial fingers[J]. Smart Materials and Structures, 2006, 15(5): 1217-1224. |
24 | BONOMO C, BRUNETTO P, FORTUNA L, et al. A tactile sensor for biomedical applications based on IPMCs[J]. IEEE Sensors Journal, 2008, 8(8): 1486-1493. |
25 | MA Suqian, ZHANG Yunpeng, LIANG Yunhong, et al. High-performance ionic-polymer-metal composite: Toward large-deformation fast-response artificial muscles[J]. Advanced Functional Materials, 2020, 30(7): 1908508-1908517. |
26 | CHANG Xiliang, CHEE Peisong, Eng Hock LIM, et al. Radio-frequency enabled ionic polymer metal composite (IPMC) actuator for drug release application[J]. Smart Materials and Structures, 2019, 28(1): 015024-015033. |
27 | MING Yue, YANG Ying, FU Ruoping, et al. IPMC sensor integrated smart glove for pulse diagnosis, Braille recognition, and human-computer interaction[J]. Advanced Materials Technologies, 2018, 3(12): 1800257-1800265. |
28 | LEE Jai-Hua, CHEE Peisong, Eng-Hock LIM, et al. Artificial intelligence-assisted throat sensor using ionic polymer-metal composite (IPMC) material[J]. Polymers, 2021, 13(18): 13183041-13183053. |
29 | AKLE B J, WALLMERSPERGER T, AKLE E, et al. High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the chemo-electric behavior[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Proc SPIE 6929, Behavior and Mechanics of Multifunctional and Composite Materials 2008. SPIE, 2008, 6929: 128-137. |
30 | WANG Hyuck Sik, CHO Jaehyun, SONG Dae Seok, et al. High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21998-22005. |
31 | BYUN Jong Min, HWANG Taeseon, KIM Kwang Jin. Formation of a gold nanoparticle layer for the electrodes of ionic polymer-metal composites by electroless deposition process[J]. Applied Surface Science, 2019, 470: 8-12. |
32 | YANG Liang, ZHANG Dongsheng, ZHANG Xining, et al. Fabrication of Cu/nafion-based ionic polymer metal composites by electroless plating method[J]. Integrated Ferroelectrics, 2020, 209(1): 48-57. |
33 | KIM Si Seup, JEON Jin Han, Chang Doo KEE, et al. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT: PSS[J]. Smart Materials and Structures, 2013, 22(8): 085026-085035. |
34 | TERASAWA N, ASAKA K. High-performance PEDOT: PSS/single-walled carbon nanotube/ionic liquid actuators combining electrostatic double-layer and faradaic capacitors[J]. Langmuir, 2016, 32(28): 7210-7218. |
35 | AABLOO A, DE LUCA V, DI PASQUALE G, et al. A new class of ionic electroactive polymers based on green synthesis[J]. Sensors and Actuators A: Physical, 2016, 249: 32-44. |
36 | KONG Lirong, CHEN Wei. Carbon nanotube and graphene-based bioinspired electrochemical actuators[J]. Advanced Materials, 2014, 26(7): 1025-1043. |
37 | TOROP J, AABLOO A, JAGER E W H. Novel actuators based on polypyrrole/carbide-derived carbon hybrid materials[J]. Carbon, 2014, 80: 387-395. |
38 | PALMRE V, PUGAL D, KIM K J, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles[J]. Scientific Reports, 2014, 4: 6176-6186. |
39 | YILMAZ O C, SEN I, GURSES B O, et al. The effect of gold electrode thicknesses on electromechanical performance of nafion-based ionic polymer metal composite actuators[J]. Composites Part B: Engineering, 2019, 165: 747-753. |
40 | PALMRE V, KIM Seong Jun, PUGAL D, et al. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness[J]. International Journal of Smart and Nano Materials, 2014, 5(2): 99-113. |
41 | XU Yan, ZHAO Gang, ZHU Yuming, et al. Morphology characterization and failure mechanism investigation of Ag-IPMC[J]. Ionics, 2015, 21(4): 1089-1094. |
42 | ESMAELI E, GANJIAN M, RASTEGAR H, et al. Humidity sensor based on the ionic polymer metal composite[J]. Sensors and Actuators B: Chemical, 2017, 247: 498-504. |
43 | HASANI M, ALAEI A, MOUSAVI M S S, et al. Fabrication of ionic polymer-metal composite actuators with durable and quality-enhanced sputtered electrodes[J]. Journal of Micromechanics and Microengineering, 2019, 29(8): 085008-085030. |
44 | KIM Suran, HONG Seungbum, CHOI Yoon-Young, et al. Effect of nucleation time on bending response of ionic polymer-metal composite actuators[J]. Electrochimica Acta, 2013, 108: 547-553. |
45 | HE Zhihao, JIAO Shasha, WANG Zhengping, et al. An antifatigue liquid metal composite electrode ionic polymer-metal composite artificial muscle with excellent electromechanical properties[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14630-14639. |
46 | IKUSHIMA K, JOHN S, ONO A, et al. PEDOT/PSS bending actuators for autofocus micro lens applications[J]. Synthetic Metals, 2010, 160(17/18): 1877-1883. |
47 | Yunkyeong BAE, PARK Minjeong, KIM Minyeob, et al. A hot-pressing pretreatment of Cu substrate and dry transfer method of multilayer-stacked graphene for ionic electroactive polymers[J]. Thin Solid Films, 2020, 698: 136848-136855. |
48 | ONISHI K, SEWA S, ASAKA K, et al. Morphology of electrodes and bending response of the polymer electrolyte actuator[J]. Electrochimica Acta, 2001, 46(5): 737-743. |
49 | GUO Dongjie, WANG Long, WANG Xinjie, et al. PEDOT coating enhanced electromechanical performances and prolonged stable working time of IPMC actuator[J]. Sensors and Actuators B: Chemical, 2020, 305: 127488-127496. |
50 | 武畏志鹏, 邹华, 宁南英, 等. 柔性电极材料的国内外研究进展[J]. 功能材料, 2021, 52(2): 2039-2049. |
WU Weizhipeng, ZOU Hua, NING Nanying, et al. Research progress of flexible electrode materials at home and abroad[J]. Journal of Functional Materials, 2021, 52(2): 2039-2049. | |
51 | INAMUDDIN, KASHMERY H A. Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications[J]. Scientific Reports, 2019, 9(1): 9877-9888. |
52 | OKUZAKI H, TAKAGI S, HISHIKI F, et al. Ionic liquid/polyurethane/PEDOT: PSS composites for electro-active polymer actuators[J]. Sensors and Actuators B: Chemical, 2014, 194: 59-63. |
53 | LUQMAN M, SHAIKH H M, ANIS A, et al. A convenient and simple ionic polymer-metal composite (IPMC) actuator based on a platinum-coated sulfonated poly(ether ether ketone)-polyaniline composite membrane[J]. Polymers, 2022, 14(4): 668-680. |
54 | LIU Qing, LIU Luqi, XIE Ke, et al. Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability[J]. Journal of Materials Chemistry A, 2015, 3(16): 8380-8388. |
55 | TAJIK S, BEITOLLAHI H, NEJAD F G, et al. Recent developments in conducting polymers: Applications for electrochemistry[J]. RSC Advances, 2020, 10(62): 37834-37856. |
56 | PALMRE V, BRANDELL D, MÄEORG U, et al. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators[J]. Smart Materials and Structures, 2009, 18(9): 095028-095036. |
57 | BAUGHMAN R H, CUI Changxing, ZAKHIDOV A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418): 1340-1344. |
58 | COTTINET P J, SOUDERS C, TSAI S Y, et al. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships[J]. Physics Letters A, 2012, 376(12/13): 1132-1136. |
59 | ABOUTALEBI S H, CHIDEMBO A T, SALARI M, et al. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy & Environmental Science, 2011, 4(5): 1855-1865. |
60 | CHENG Qian, TANG Jie, MA Jun, et al. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density[J]. Physical Chemistry Chemical Physics, 2011, 13(39): 17615-17624. |
61 | LU Luhua, LIU Jinghai, HU Ying, et al. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode[J]. Advanced Materials, 2012, 24(31): 4317-4321. |
62 | LU Chao, YANG Ying, WANG Jian, et al. High-performance graphdiyne-based electrochemical actuators[J]. Nature Communications, 2018, 9(1): 752-763. |
63 | WU Guan, HU Ying, LIU Yang, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nature Communications, 2015, 6: 7258-7266. |
64 | BHATT M D, KIM Heeju, KIM Gunn. Various defects in graphene: A review[J]. RSC Advances, 2022, 12(33): 21520-21547. |
65 | KIM Doyeon, KIM K J, Jae-do NAM, et al. Electro-chemical operation of ionic polymer-metal composites[J]. Sensors and Actuators B: Chemical, 2011, 155(1): 106-113. |
66 | PENG Wuxian, ZHANG Yajing, GAO Jinhai, et al. Fabrication and performance of ionic polymer-metal composites for biomimetic applications[J]. Sensors and Actuators A: Physical, 2019, 299: 111613-111619. |
67 | JOHANSON U, MÄEORG U, SAMMELSELG V, et al. Electrode reactions in Cu-Pt coated ionic polymer actuators[J]. Sensors and Actuators B: Chemical, 2008, 131(1): 340-346. |
68 | SANGIAN D, ZHENG Wen, SPINKS G M. Optimization of the sequential polymerization synthesis method for polypyrrole films[J]. Synthetic Metals, 2014, 189: 53-56. |
69 | WU Yanzhe, SPINKS G M, WALLACE G G. Fast trilayer polypyrrole bending actuators for high speed applications[J]. Synthetic Metals, 2006, 156(16/17): 1017-1022. |
70 | ALICI G, DEVAUD V, RENAUD P, et al. Conducting polymer microactuators operating in air[J]. Journal of Micromechanics and Microengineering, 2009, 19(2): 025017-025026. |
71 | KHAN A, INAMUDDIN, JAIN R K, et al. Thorium (Ⅳ) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application[J]. Polymer Engineering & Science, 2017, 57(3): 258-267. |
72 | MUKAI K, ASAKA K, KENJI H, et al. High-speed carbon nanotube actuators based on an oxidation/reduction reaction[J]. Chemistry, 2011, 17(39): 10965-10971. |
73 | MUKAI K, ASAKA K, SUGINO T, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: Application to fast-moving, low-voltage electromechanical actuators operable in air[J]. Advanced Materials, 2009, 21(16): 1582-1585. |
74 | MUKAI K, ASAKA K, KIYOHARA K, et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel[J]. Electrochimica Acta, 2008, 53(17): 5555-5562. |
75 | KIM Kwang J, SHAHINPOOR M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles[J]. Polymer, 2002, 43(3): 797-802. |
76 | OKAZAKI H, SAWADA S, KIMURA M, et al. Soft actuator using ionic polymer-metal composite composed of gold electrodes deposited using vacuum evaporation[J]. IEEE Electron Device Letters, 2012, 33(7): 1087-1089. |
77 | JEON Jin Han, Ilkwon OH, Chang-Doo KEE. Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition[J]. Sensors and Actuators B: Chemical, 2010, 146(1): 307-313. |
78 | YAN Y S, SANTANIELLO T, BETTINI L G, et al. Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes[J]. Advanced Materials, 2017, 29(23): 1606109-1606118. |
79 | CHEN I-Wen P, YANG Ming-Chia, YANG Chia-Hui, et al. Newton output blocking force under low-voltage stimulation for carbon nanotube-electroactive polymer composite artificial muscles[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5550-5555. |
80 | 徐岩, 赵刚, 朱玉敏, 等. Ag-IPMC物质组分变化及失效机制[J]. 稀有金属材料与工程, 2016, 45(3): 650-655. |
XU Yan, ZHAO Gang, ZHU Yumin, et al. Material component variation and failure mechanism of Ag-IPMC[J]. Rare Metal Materials and Engineering, 2016, 45(3): 650-655. | |
81 | LU Luhua, LIU Jinghai, HU Ying, et al. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design[J]. Advanced Materials, 2013, 25(9): 1270-1274. |
82 | LIU Jiaqi, LI Yuefeng, LIANG Bo, et al. Research on the synthesis and properties of PPY modified electrode IPMC[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012048-012055. |
83 | CHANG Longfei, ASAKA Kinji, ZHU Zicai, et al. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite[J]. Journal of Applied Physics, 2014, 115(24): 244901-244909. |
84 | STOIMENOV B L, ROSSITER J M, MUKAI T. Anisotropic surface roughness enhances the bending response of ionic polymer-metal composite (IPMC) artificial muscles[C]//SPIE Smart Materials, Nano- and Micro-Smart Systems. Proc SPIE 6413, Smart Materials IV. SPIE, 2006, 6413: 13-22. |
85 | YANG Liang, ZHANG Dongsheng, ZHANG Xining, et al. Surface roughening of Nafion membranes using different route planning for IPMCs[J]. International Journal of Smart and Nano Materials, 2020, 11(2): 117-128. |
86 | CHANG Longfei, YANG Qian, NIU Qingzheng, et al. High-performance ionic polymer-metal composite actuators fabricated with microneedle roughening[J]. Smart Materials and Structures, 2019, 28(1): 015007-015028. |
87 | CHOI N J, LEE H K, JUNG S, et al. Electroactive polymer actuator with high response speed through anisotropic surface roughening by plasma etching[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(10): 5385-5388. |
88 | SAHER S, MOON Sungwon, KIM Seong Jun, et al. O2 plasma treatment for ionic polymer metal nano composite (IPMNC) actuator[J]. Sensors and Actuators B: Chemical, 2010, 147(1): 170-179. |
89 | KIM Seong Jun, LEE In Taek, KIM Yong Hyup. Performance enhancement of IPMC actuator by plasma surface treatment[J]. Smart Materials and Structures, 2007, 16(1): N6-N11. |
90 | LIANG Yunhong, ZHANG Hao, LIN Zhaohua, et al. High specific surface area Pd/Pt electrode-based ionic polymer-metal composite for high-performance biomimetic actuation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(8): 2645-2652. |
91 | WANG Yanjie, ZHU Zicai, LIU Jiayu, et al. Effects of surface roughening of Nafion 117 on the mechanical and physicochemical properties of ionic polymer-metal composite (IPMC) actuators[J]. Smart Materials and Structures, 2016, 25(8): 085012-085025. |
92 | TERASAWA N, MUKAI K, YAMATO K, et al. Superior performance of manganese oxide/multi-walled carbon nanotubes polymer actuator over ruthenium oxide/multi-walled carbon nanotubes and single-walled carbon nanotubes[J]. Sensors and Actuators B: Chemical, 2012, 171/172: 595-601. |
93 | KOTAL M, KIM Jaehwan, KIM Kwang J, et al. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles[J]. Advanced Materials, 2016, 28(8): 1610-1615. |
94 | KOTAL M, KIM Jaehwan, TABASSIAN R, et al. Highly bendable ionic soft actuator based on nitrogen-enriched 3D hetero-nanostructure electrode[J]. Advanced Functional Materials, 2018, 28(34): 1802464-1802476. |
95 | KIM Jaehwan, Seok Hu BAE, KOTAL M, et al. Polymer actuators: Soft but powerful artificial muscles based on 3D graphene-CNT-Ni heteronanostructures (small 31/2017)[J]. Small, 2017, 13(31): 1701314-1701323. |
96 | WANG Dongxing, LU Chao, ZHAO Jingjing, et al. High energy conversion efficiency conducting polymer actuators based on PEDOT: PSS/MWCNTs composite electrode[J]. RSC Advances, 2017, 7(50): 31264-31271. |
97 | ROY S, KIM Jaehwan, KOTAL M, et al. Collectively exhaustive electrodes based on covalent organic framework and antagonistic co-doping for electroactive ionic artificial muscles[J]. Advanced Functional Materials, 2019, 29(17): 1900161-1900171. |
98 | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
[1] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[2] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[3] | TONG Xinrui, LIU Yanjun, CAO Linfeng, BI Meiying, DONG Yanjia, WU Xinyu, TAN Junjie, YING Ming. Design of controllable citZ gene nanobox by DNA origami [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 344-349. |
[4] | Mo ZHOU,Yanjun LIU,Xinrui TONG,Yanjia DONG,Xinyu WU,Yingxiang WANG,Ming YING. Self-assemble of gene nanocone with sdhC DNA sequence of E. coli K-12 [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 679-685. |
[5] | Guochen DAI, Zetian ZHANG, Wenwei GAO, Zhengjun LI. Separation principle, fabrication strategies and performance of sorbents for oil-water emulsions [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1785-1793. |
[6] | NIU Fanghao, HU Zhide, YAN Hua, YANG Jianjian, ZHANG Hansong. Rheological properties of magnetorheological suspensions with PMMA/oleic acid as surfactants [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1888-1895. |
[7] | WU Wen, ZHU Huacheng, XIE Rui, ZHANG Lei, LUO Feng, JU Xiaojie, WANG Wei, LIU Zhuang, CHU Liangyin. Effect of size ratio of smart microgels gates to membrane pores on the responsibility of smart membranes [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 223-229. |
[8] | JI Haining, LIU Dongqing, ZHANG Chaoyang, CHENG Haifeng, YANG Lixiang. Application advances of vanadium dioxide in infrared camouflage and stealth technology [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4099-4105. |
[9] | YANG Jianjian, YAN Yua, DAI Jun, ZHANG Hansong. A review on magnetorheological fluid: properties and applications [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 247-260. |
[10] | DANG Zhao, LIU Libin, XIANG Yu, FANG Wenyuan. Progress of superhydrophobic-superoleophilic materials for oil/water separation [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 216-222. |
[11] | LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Progress in stimuli-responsive smart hydrogels with high mechanical properties [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1812-1819. |
[12] | FENG Jianzhong, MING Yaoqiang, ZHANG Yufan, GUO Haobin, HUANG Kaixin, HU Jianfeng, QU Jinqing. Progress of research on encapsuled isocyanate self-healing polymeric materials [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 175-181. |
[13] | XIN Zhong, ZHANG Wenfei. Research progress of fabrication and application of superamphiphobic surface [J]. Chemical Industry and Engineering Progree, 2015, 34(02): 447-455,478. |
[14] | . Recent progress of noble metal/WO3 composite nanos [J]. Chemical Industry and Engineering Progree, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |