1 |
郭朝先. 2060年碳中和引致中国经济系统根本性变革[J]. 北京工业大学学报, 2021, 21(5): 64-77.
|
|
GUO Chaoxian. Carbon neutrality by 2060 leads to fundamental changes in China’s economic system[J]. Journal of Beijing University of Technology, 2021, 21(5): 64-77.
|
2 |
ZHANG Runsen, HANAOKA Tatsuya. Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness[J]. Resources, Conservation and Recycling, 2021, 170: 105622.
|
3 |
许艳雷, 邱明, 李军星, 等. 基于SKF-KF-Bayes的滚动轴承剩余使用寿命预测方法[J]. 振动与冲击, 2021, 40(19): 26-31, 40.
|
|
XU Yanlei, QIU Ming, LI Junxing, et al. Remaining useful life prediction method of rolling bearing based on SKF-KF-Bayes[J]. Journal of Vibration and Shock, 2021, 40(19): 26-31, 40.
|
4 |
KUMAR P D, AMARNATH M, CHELLADURAI H. An experimental approach to study the effect of wear on traction coefficient and dynamic response of roller bearing[J]. Materials Today: Proceedings, 2021, 46: 9889-9892.
|
5 |
QU Shengguan, REN Zhaojun, HU Xiongfenget al. The effect of electric pulse aided ultrasonic rolling processing on the microstructure evolution, surface properties, and fatigue properties of a titanium alloy Ti5Al4Mo6V2Nb1Fe[J]. Surface and Coatings Technology, 2021, 421: 127408.
|
6 |
CHATRA K R S, LUGT P M. The process of churning in a grease lubricated rolling bearing: Channeling and clearing[J]. Tribology International, 2021, 153: 106661.
|
7 |
杨晓蔚. 滚动轴承产品技术发展的现状与方向[J]. 轴承, 2020(8): 65-70.
|
|
YANG Xiaowei. Current situation and direction for technology development of rolling bearing products[J]. Bearing, 2020(8): 65-70.
|
8 |
LI Xinming, GUO Feng, POLL Gerhard, et al. Grease film evolution in rolling elastohydrodynamic lubrication contacts[J]. Friction, 2021, 9(1): 179-190.
|
9 |
刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(S2): 33-37, 45.
|
|
LIU Xiaogang, SUN Hong, LIU Lincong. Research progress of 2D materials in friction mechanism and lubrication application[J]. Materials Reports, 2021, 35(S2): 33-37, 45.
|
10 |
CAI Xingke, LUO Yuting, LIU Bilu, et al. Preparation of 2D material dispersions and their applications[J]. Chemical Society Reviews, 2018,47, (16): 6224-6266.
|
11 |
GUO Yanbao, ZHOU Xuanli, LEE Kyungjun, et al. Recent development in friction of 2D materials: From mechanisms to applications[J]. Nanotechnology, 2021, 32(31): 312002.
|
12 |
NOREEN Shahzadi, TAHIR Muhammad Bilal, HUSSAIN Abid, et al. Emerging 2D-Nanostructured materials for electrochemical and sensing application—A review[J]. International Journal of Hydrogen Energy, 2022, 47(2): 1371-1389.
|
13 |
JI Dong, WANG Zhen, ZHU Yanjiao, et al. One-step environmentally friendly exfoliation and functionalization of hexagonal boron nitride by β-cyclodextrin-assisted ball milling[J]. Ceramics International, 2020, 46(13): 21084-21089.
|
14 |
TAN Huijun, NAVIK Rahul, LIU Zhiyuan, et al. Scalable massive production of defect-free few-layer graphene by ball-milling in series with shearing exfoliation in supercritical CO2 [J]. The Journal of Supercritical Fluids, 2022, 181: 105496.
|
15 |
ABD-ELRAHIM A G, CHUN Doo Man. One-step mechanical exfoliation and deposition of layered materials (graphite, MoS2, and BN) by vacuum-kinetic spray process[J]. Vacuum, 2022, 196: 110732.
|
16 |
READ Oliver, SHIN Yuyoung, HU Chenxia, et al. Insights into the exfoliation mechanism of pyrene-assisted liquid phase exfoliation of graphene from lateral size-thickness characterisation[J]. Carbon, 2022, 186: 550-559.
|
17 |
CHEN Ganlin, ZHANG Lei, LI Luying. GaSe layered nanorods formed by liquid phase exfoliation for resistive switching memory applications[J]. Journal of Alloys and Compounds, 2020, 823: 153697.
|
18 |
MA Lu, LIU Zan, CHENG Zhilin. Scalable exfoliation and friction performance of few-layered WS2 nanosheets by microwave-assisted liquid-phase sonication[J]. Ceramics International, 2020, 46(3): 3786-3792.
|
19 |
LIU Jiapeng, LIU Huibin, PENG Wenchao, et al. High-yield exfoliation of MoS2(WS2) monolayers towards efficient photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 431(4): 133286.
|
20 |
ZHANG Y, YAO Y, SENDEKU M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures[J]. Advanced Materials, 2019, 31(41): e1901694.
|
21 |
JIAO Lei, WANG Yuehui, ZHI Yusong, et al. Fabrication and characterization of two-dimensional layered MoS2 thin films by pulsed laser deposition[J]. Advances in Condensed Matter Physics, 2018, 2018: 3485380.
|
22 |
LU Peng, LIU Yi, ZHOU Tuantuan, et al. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations[J]. Journal of Membrane Science, 2018, 567: 89-103.
|
23 |
GRAZIANETTI Carlo, MARTELLA Christian, MOLLE Alessandro. The xenes generations: A taxonomy of epitaxial single-element 2D materials[J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2020, 14(2): 1900439.
|
24 |
HWANG Seung Kyu, KANG Sung Min, RETHINASABAPATHY Muruganantham, et al. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants[J]. Chemical Engineering Journal, 2020, 397: 125428.
|
25 |
卢鹏, 许世海, 向硕, 等.氟化石墨烯对锂基润滑脂理化和摩擦学性能的影响[J]. 当代化工, 2022, 51(2): 257-262.
|
|
LU Peng, XU Shihai, XIANG Shuo, et al. Effect of fluorinated graphene on physicochemical and tribological properties of lithium grease[J]. Contemporary Chemical Industry, 2022, 51(2): 257-262.
|
26 |
俸颢, 毛大恒, 刘巧红, 等. 二硫化钨超细粉末对高温复合锂基润滑脂性能的影响[J].四川大学学报, 2006, 38(3): 119-123.
|
|
FENG Hao, MAO Daheng, LIU Qiaohong, et al. Effect of superfine WS2 powder on performances of high temperature lithium complex grease[J]. Journal of Sichuan University, 2006, 38(3): 119-123.
|
27 |
ZHANG Ruochong, QIAO Dan, LIU Xuqing, et al. A facile and effective method to improve the dispersibility of WS2 nanosheets in PAO8 for the tribological performances[J]. Tribology International, 2018, 118: 60-70.
|
28 |
XU Yufu, GENG Jian, PENG Yubin, et al. Lubricating mechanism of Fe3O4@MoS2 core-shell nanocomposites as oil additives for steel/steel contact[J]. Tribology International, 2018, 121: 241-251.
|