Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4322-4339.DOI: 10.16085/j.issn.1000-6613.2022-1777
• Materials science and technology • Previous Articles Next Articles
TANG Lei1(
), ZENG Desen2(
), LING Ziye1,3(
), ZHANG Zhengguo1,3,4, FANG Xiaoming1,3,4
Received:2022-09-23
Revised:2022-11-16
Online:2023-09-19
Published:2023-08-15
Contact:
ZENG Desen, LING Ziye
汤磊1(
), 曾德森2(
), 凌子夜1,3(
), 张正国1,3,4, 方晓明1,3,4
通讯作者:
曾德森,凌子夜
作者简介:汤磊(1999—),男,硕士研究生,研究方向为相变蓄冷材料。E-mail:952295541@qq.com。
基金资助:CLC Number:
TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339.
汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1777
| 名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 密度/kg·m-3 |
|---|---|---|---|
| 甲醇 | -97 | 99 | 810~904 |
| 正己烷 | -95 | 152 | 677~760 |
| 乙烷 | -88 | 489 | 544~641 |
| 乙炔 | -84 | 144 | 760~764 |
| 2-己酮 | -56 | 148.7 | 830 |
| 正壬烷 | -54 | 121 | 720 |
| 癸烷 | -30 | 202 | 735 |
| 十二烷 | -12 | 216 | 750 |
| 二甘醇 | -10 | 247 | 1118 |
| 三甘醇 | -7 | 247 | 1200 |
| 十三烷 | -6 | 154 | 756 |
| 四氢呋喃 | 5 | 280 | 890 |
| 正十四烷 | 5.5 | 231 | 771 |
| 甲酸 | 7.8 | 247 | 1227 |
| 聚乙二醇400 | 8 | 100 | 1127 |
| 己二酸二甲酯 | 10 | 165 | 1062 |
| 棕榈酸丙酯 | 10 | 186 | 864 |
| 辛酸 | 16 | 148 | 901 |
| 醋酸 | 17 | 187~273 | 1050 |
| 甘油 | 18 | 199 | 1260 |
| 硬酯酸丁酯 | 19 | 140~200 | 1097 |
| 正十七烷 | 22 | 215 | 778 |
| 棕榈酸乙酯 | 23 | 122 | 870 |
| 名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 密度/kg·m-3 |
|---|---|---|---|
| 甲醇 | -97 | 99 | 810~904 |
| 正己烷 | -95 | 152 | 677~760 |
| 乙烷 | -88 | 489 | 544~641 |
| 乙炔 | -84 | 144 | 760~764 |
| 2-己酮 | -56 | 148.7 | 830 |
| 正壬烷 | -54 | 121 | 720 |
| 癸烷 | -30 | 202 | 735 |
| 十二烷 | -12 | 216 | 750 |
| 二甘醇 | -10 | 247 | 1118 |
| 三甘醇 | -7 | 247 | 1200 |
| 十三烷 | -6 | 154 | 756 |
| 四氢呋喃 | 5 | 280 | 890 |
| 正十四烷 | 5.5 | 231 | 771 |
| 甲酸 | 7.8 | 247 | 1227 |
| 聚乙二醇400 | 8 | 100 | 1127 |
| 己二酸二甲酯 | 10 | 165 | 1062 |
| 棕榈酸丙酯 | 10 | 186 | 864 |
| 辛酸 | 16 | 148 | 901 |
| 醋酸 | 17 | 187~273 | 1050 |
| 甘油 | 18 | 199 | 1260 |
| 硬酯酸丁酯 | 19 | 140~200 | 1097 |
| 正十七烷 | 22 | 215 | 778 |
| 棕榈酸乙酯 | 23 | 122 | 870 |
| 名称 | 相变温度 /℃ | 相变潜热 /kJ·kg-1 | 密度 /kg·m-3 |
|---|---|---|---|
| 二氧化碳 | -78 | 574 | 1562 |
| 氨气 | -78 | 332 | 682~728 |
| 汞 | -39 | 12 | 13546 |
| 冰 | 0 | 333 | 920 |
| 五氯化锑 | 4 | 33 | 2360 |
| 三水氯酸锂 | 8 | 253 | 1720(固体),1530(液体) |
| 硫酸 | 10 | 100 | 1831 |
| 六水磷酸氢二钾 | 14 | 109 | — |
| 四水磷酸氢二钾 | 19 | 231 | — |
| 六水溴化铁 | 21 | 105 | 1820 |
| 三氧化二磷 | 24 | 64 | 2130 |
| 六水硝酸锰 | 25 | 126~148 | 1738(固体),1728(液体) |
| 磷酸 | 25 | 147 | 1874 |
| 名称 | 相变温度 /℃ | 相变潜热 /kJ·kg-1 | 密度 /kg·m-3 |
|---|---|---|---|
| 二氧化碳 | -78 | 574 | 1562 |
| 氨气 | -78 | 332 | 682~728 |
| 汞 | -39 | 12 | 13546 |
| 冰 | 0 | 333 | 920 |
| 五氯化锑 | 4 | 33 | 2360 |
| 三水氯酸锂 | 8 | 253 | 1720(固体),1530(液体) |
| 硫酸 | 10 | 100 | 1831 |
| 六水磷酸氢二钾 | 14 | 109 | — |
| 四水磷酸氢二钾 | 19 | 231 | — |
| 六水溴化铁 | 21 | 105 | 1820 |
| 三氧化二磷 | 24 | 64 | 2130 |
| 六水硝酸锰 | 25 | 126~148 | 1738(固体),1728(液体) |
| 磷酸 | 25 | 147 | 1874 |
| 名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 组成 |
|---|---|---|---|
| 氯化氢+水 | -86 | 74 | 24.8∶75.2 (质量比) |
| 氯化锌+水 | -62 | 117 | 51∶49 (质量比) |
| 氯化钙+水 | -55 | 165 | 29.8∶70.2 (质量比) |
| 硝酸镁+水 | -29 | 187 | 34.6∶65.4 (质量比) |
| 乙二醇+ 氯化铵+水 | -23 | 176 | 10∶15∶75 (质量比) |
| 氯化钠+水 | -21 | 228 | 22.4∶77.6 (质量比) |
| 甘油+ 醋酸钠+水 | -14 | 172 | 10∶10∶80 (质量比) |
| 氯化钾+水 | -11 | 253 | 19.5∶80.5 (质量比) |
| 十二烷+十三烷 | -8 | 147 | 40∶60 (体积比) |
| 乳酸钙+氯化铵 | -4 | 265 | 50∶50 (质量比) |
| 硫酸钠+水 | -4 | 285 | 12.7∶87.3 (质量比) |
| 山梨酸钾+ 氯化钾 | -3 | 255 | 85.72∶14.28 (质量比) |
| 十二烷醇+辛酸 | 2 | 225 | 40∶60 (质量比) |
| 辛酸+月桂酸 | 4 | 152 | 9∶1 (摩尔比) |
| 六水氯化钙+ 六水溴化钙 | 15 | 140 | 50∶50 (质量比) |
| 癸酸+月桂酸 | 19 | 132 | 61.5∶38.5 (摩尔比) |
| 癸酸+棕榈酸酯 | 22 | 153 | 75.2∶24.8 (摩尔比) |
| 六水氯化钙+ 六水氯化镁 | 25 | 95 | 50∶50 (质量比) |
| 六水氯化钙+ 六水氯化镁 | 25 | 127 | 66.7∶33.3 (质量比) |
| 六水硝酸钙+ 六水硝酸锌 | 25 | 130 | 45∶55 (质量比) |
| 名称 | 相变温度/℃ | 相变潜热/kJ·kg-1 | 组成 |
|---|---|---|---|
| 氯化氢+水 | -86 | 74 | 24.8∶75.2 (质量比) |
| 氯化锌+水 | -62 | 117 | 51∶49 (质量比) |
| 氯化钙+水 | -55 | 165 | 29.8∶70.2 (质量比) |
| 硝酸镁+水 | -29 | 187 | 34.6∶65.4 (质量比) |
| 乙二醇+ 氯化铵+水 | -23 | 176 | 10∶15∶75 (质量比) |
| 氯化钠+水 | -21 | 228 | 22.4∶77.6 (质量比) |
| 甘油+ 醋酸钠+水 | -14 | 172 | 10∶10∶80 (质量比) |
| 氯化钾+水 | -11 | 253 | 19.5∶80.5 (质量比) |
| 十二烷+十三烷 | -8 | 147 | 40∶60 (体积比) |
| 乳酸钙+氯化铵 | -4 | 265 | 50∶50 (质量比) |
| 硫酸钠+水 | -4 | 285 | 12.7∶87.3 (质量比) |
| 山梨酸钾+ 氯化钾 | -3 | 255 | 85.72∶14.28 (质量比) |
| 十二烷醇+辛酸 | 2 | 225 | 40∶60 (质量比) |
| 辛酸+月桂酸 | 4 | 152 | 9∶1 (摩尔比) |
| 六水氯化钙+ 六水溴化钙 | 15 | 140 | 50∶50 (质量比) |
| 癸酸+月桂酸 | 19 | 132 | 61.5∶38.5 (摩尔比) |
| 癸酸+棕榈酸酯 | 22 | 153 | 75.2∶24.8 (摩尔比) |
| 六水氯化钙+ 六水氯化镁 | 25 | 95 | 50∶50 (质量比) |
| 六水氯化钙+ 六水氯化镁 | 25 | 127 | 66.7∶33.3 (质量比) |
| 六水硝酸钙+ 六水硝酸锌 | 25 | 130 | 45∶55 (质量比) |
| 1 | TAKUDZWA MUZHANJE Allan, HASSAN M A, HASSAN Hamdy. Phase change material based thermal energy storage applications for air conditioning: Review[J]. Applied Thermal Engineering, 2022, 214: 118832. |
| 2 | GOLDSTEIN Eli A, RAMAN Aaswath P, FAN Shanhui. Sub-ambient non-evaporative fluid cooling with the sky[J]. Nature Energy, 2017, 2(9): 1-7. |
| 3 | 吴玉超, 史军军, 王辉国, 等. 炼化企业在“双碳”背景下的技术探讨[J]. 石油炼制与化工, 2022, 53(1): 1-6. |
| WU Yuchao, SHI Junjun, WANG Huiguo, et al. Future prospects for refining industry in the era of “carbon peak and carbon neutralization”[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 1-6. | |
| 4 | 刘晨敏. 冷链物流用复合相变蓄冷材料研究进展[J]. 化工新型材料, 2021, 49(2): 16-19. |
| LIU Chenmin. Research progress on PCCSM used in cold chain logistics[J]. New Chemical Materials, 2021, 49(2): 16-19. | |
| 5 | CATTIN Magali, JONNALAGEDDA Sashidhar, MAKOHLISO Solomzi, et al. The status of refrigeration solutions for last mile vaccine delivery in low-income settings[J]. Vaccine X, 2022, 11: 100184. |
| 6 | CUI Yaping, XIE Jingchao, LIU Jiaping, et al. A review on phase change material application in building[J]. Advances in Mechanical Engineering, 2017, 9(6). |
| 7 | SAID M A, HASSAN Hamdy. Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit[J]. Applied Energy, 2018, 230: 1380-1402. |
| 8 | 黄双福, 何志森, 连洪波. 冰蓄冷技术在空调系统中的应用及经济性研究[J]. 山东化工, 2021, 50(23): 151-153. |
| HUANG Shuangfu, HE Zhisen, LIAN Hongbo. Application and economic study of ice storage technology in air conditioning system[J]. Shandong Chemical Industry, 2021, 50(23): 151-153. | |
| 9 | YING Boan, KWOK Yi lin, LI Yi, et al. Assessing the performance of textiles incorporating phase change materials[J]. Polymer Testing, 2004, 23(5): 541-549. |
| 10 | 张雪, 刘圣春, 徐智明. 固液相变影响因素及应用研究综述[J]. 冷藏技术, 2021, 44(1): 45-51. |
| ZHANG Xue, LIU Shengchun, XU Zhiming. A review on influencing factors and application of solid-liquid phase transformation[J]. Journal of Refrigeration Technology, 2021, 44(1): 45-51. | |
| 11 | SINGH Suman, GAIKWAD Kirtiraj K, LEE Youn Suk. Phase change materials for advanced cooling packaging[J]. Environmental Chemistry Letters, 2018, 16(3): 845-859. |
| 12 | 孙小琴. 相变材料蓄放热机理及其基站冷却的能效研究[D]. 长沙: 湖南大学, 2014. |
| SUN Xiaoqin. Energy storage and release theory of phase change material (PCM) and its application for cooling in telecommunications base station (TBS)[D]. Changsha: Hunan University, 2014. | |
| 13 | YANG Tianyu, KING William P, MILJKOVIC Nenad. Phase change material-based thermal energy storage[J]. Cell Reports Physical Science, 2021, 2(8): 100540. |
| 14 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. |
| CHEN Ying, JIANG Qinghui, XIN Jiwu, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. | |
| 15 | 王文楷, 董震, 赖艳华, 等. 相变储能材料的研究与应用进展[J]. 制冷与空调(四川), 2020, 34(1): 91-103. |
| WANG Wenkai, DONG Zhen, LAI Yanhua, et al. The research and application progress of phase change energy storage materials[J]. Refrigeration & Air Conditioning, 2020, 34(1): 91-103. | |
| 16 | VITORINO Nuno, ABRANTES João C C, FRADE Jorge R. Quality criteria for phase change materials selection[J]. Energy Conversion and Management, 2016, 124: 598-606. |
| 17 | 黄雪, 崔英德, 尹国强, 等. 相变蓄冷材料研究进展[J]. 化工新型材料, 2020, 48(1): 19-22, 30. |
| HUANG Xue, CUI Yingde, YIN Guoqiang, et al. Research progress of phase change materials[J]. New Chemical Materials, 2020, 48(1): 19-22, 30. | |
| 18 | SHARMA Atul, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
| 19 | YANG Guijun, Yoon-Ji YIM, LEE Ji Won, et al. Carbon-filled organic phase-change materials for thermal energy storage: A review[J]. Molecules (Basel, Switzerland), 2019, 24(11): 2055. |
| 20 | SU Weiguang, DARKWA Jo, KOKOGIANNAKIS Georgios. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
| 21 | 章学来, 张时华, 徐笑锋, 等. 相变储能在冷链物流中的应用与研究进展[J]. 保鲜与加工, 2021, 21(2): 145-150. |
| ZHANG Xuelai, ZHANG Shihua, XU Xiaofeng, et al. Application and research progress of phase change energy storage in cold chain logistics[J]. Storage and Process, 2021, 21(2): 145-150. | |
| 22 | KENISARIN Murat M. Thermophysical properties of some organic phase change materials for latent heat storage: A review[J]. Solar Energy, 2014, 107: 553-575. |
| 23 | ZHANG Xinghui, SHI Qili, LUO Lingai, et al. Research progress on the phase change materials for cold thermal energy storage[J]. Energies, 2021, 14(24): 8233. |
| 24 | 杨晋, 殷勇高. 空调蓄冷用相变材料的研究进展[J]. 制冷学报, 2022, 43(3): 37-44. |
| YANG Jin, YIN Yonggao. Research progress of phase change materials for cold thermal energy storage in air-conditioners[J]. Journal of Refrigeration, 2022, 43(3): 37-44. | |
| 25 | 张生娣, 曾金波, 李翔, 等.相变储能材料六水氯化钙的储热性能优化研究[J/OL]. 盐湖研究, 2022. . |
| ZHANG Shengdi, ZENG Jinbo, LI Xiang,et al. Optimization of thermal storage performance of phase change energy storage material calcium chloride hexahydrate[J/OL]. Journal of Salt Lake Research, 2022. . | |
| 26 | 华维三, 章学来, 刘锋, 等. 相变材料复合八水氢氧化钡的制备及热性能[J]. 化工进展, 2018, 37(11): 4384-4389. |
| HUA Weisan, ZHANG Xuelai, LIU Feng, et al. Preparation and thermal properties of composite barium hydroxide octahydrate for energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4384-4389. | |
| 27 | Fei LYU, ZHU Rongrong, TANG Wei, et al. Progress of ice slurry in food industry: application, production, heat and mass transfer[J]. International Journal of Food Science & Technology, 2022, 57(2): 842-855. |
| 28 | KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505. |
| 29 | FANG Xianshi, HUANG Kailiang, FENG Guohui, et al. Experimental and numerical research on the performance of a seasonal ice storage device in summer residential rooms of northeast China[J]. Sustainable Cities and Society, 2021, 75: 103334. |
| 30 | HAO Ling, WEI Mingshan, XU Fei, et al. Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization[J]. Applied Energy, 2020, 261: 114477. |
| 31 | 王成君, 段志英, 王爱军, 等. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066. |
| WANG Chengjun, DUAN Zhiying, WANG Aijun, et al. Research progress of eutectic phase change materials[J]. Materials Reports, 2021, 35(13): 13058-13066. | |
| 32 | YANG Ying, YAN Hongyuan, SHEN Haiying. Development of a low temperature phase transforming composed material for cool storage[J]. Journal of Superconductivity and Novel Magnetism, 2010, 23(6): 1115-1117. |
| 33 | 游辉, 谢晶. 低温相变蓄冷材料及其应用于冷链的研究进展[J]. 食品与发酵工业, 2021, 47(18): 287-293. |
| YOU Hui, XIE Jing. Research progress of low temperature phase change storage materials and their applications in cold chain[J]. Food and Fermentation Industries, 2021, 47(18): 287-293. | |
| 34 | 高如启. LNG动力冷藏车蓄冷用乙醇浆体制备与流动特性研究[D]. 杭州: 浙江大学, 2022. |
| GAO Ruqi. Preparation and flow characteristics analysis of ethanol slurry for cold storage of LNG powered refrigerated vehicle[D]. Hangzhou: Zhejiang University, 2022. | |
| 35 | LI Yuyang, ZHANG Xuelai, MUNYALO Jotham Muthoka, et al. Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite[J]. Journal of Molecular Liquids, 2019, 277: 577-583. |
| 36 | HUANG Li, PIONTEK Udo. Improving performance of cold-chain insulated container with phase change material: An experimental investigation[J]. Applied Sciences, 2017, 7(12): 1288. |
| 37 | LIU Kai, HE Zhifeng, LIN Pengcheng, et al. Highly-efficient cold energy storage enabled by brine phase change material gels towards smart cold chain logistics[J]. Journal of Energy Storage, 2022, 52: 104828. |
| 38 | 谭宏博, 梁骞, 田宝聪. 我国低温冷藏车的研究综述[J]. 制冷与空调, 2007(4): 5-8. |
| TAN Hongbo, LIANG Qian, TIAN Baocong. Review of research on refrigerated vehicle in China[J]. Refrigeration and Air-Conditioning, 2007(4): 5-8. | |
| 39 | 刘广海, 吴俊章, ALAN Foster, 等. GU-PCM2型控温式相变蓄冷冷藏车设计与空载性能试验[J]. 农业工程学报, 2019, 35(6): 288-295. |
| LIU Guanghai, WU Junzhang, FOSTER Alan, et al. Design and no-load performance test of GU-PCM2 temperature controlled phase change storage refrigerator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 288-295. | |
| 40 | ZHANG Jianwu, LI Zixiao, TONG Shanhu. System performance and economic analysis of a phase change material based cold energy storage container for cold chain transportation[J]. International Journal of Photoenergy, 2022, 2022: 6836686. |
| 41 | CALATI Michele, ZILIO Claudio, RIGHETTI Giulia, et al. Latent thermal energy storage for refrigerated trucks[J]. International Journal of Refrigeration, 2022, 136: 124-133. |
| 42 | TAHER M A BEN, AHACHAD M, MAHDAOUI M, et al. A survey of computational and experimental studies on refrigerated trucks[J]. Journal of Energy Storage, 2022, 47: 103575. |
| 43 | NIU Zixuan, QI Shengyang, SHUAIB Suhaib Shuaib Adam, et al. Flexible, stimuli-responsive and self-cleaning phase change fiber for thermal energy storage and smart textiles[J]. Composites Part B: Engineering, 2022, 228: 109431. |
| 44 | PRAJAPATI Deepak G, KANDASUBRAMANIAN Balasubramanian. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
| 45 | YAZDANIRAD Saeid, DEHGHAN Habibollah. Designing of the cooling vest from paraffin compounds and evaluation of its impact under laboratory hot conditions[J]. International Journal of Preventive Medicine, 2016, 7: 47. |
| 46 | HOU Jin, YANG Zhiwei, XU Peng, et al. Design and performance evaluation of novel personal cooling garment[J]. Applied Thermal Engineering, 2019, 154: 131-139. |
| 47 | HAN Xu, YUAN Li, LI Yong, et al. Experimental studies on phase change and temperature-adjusting performance of phase change fabric clothing[J]. Advances in Mechanical Engineering, 2017, 9(6): 168781401770390. |
| 48 | 刘殷, 山传雷. 微胶囊相变粘胶纤维及其应用性能研究[J]. 化工新型材料, 2022, 50(8): 194-197. |
| LIU Yin, SHAN Chuanlei. Property and application of microencapsulated phase-change viscose fiber and its blend fabric[J]. New Chemical Materials, 2022, 50(8): 194-197. | |
| 49 | KE Guizhen, WANG Xin, PEI Jiafeng. Fabrication and properties of electrospun PAN/LA-SA/TiO2 composite phase change fiber[J]. Polymer-Plastics Technology and Engineering, 2018, 57(10): 958-964. |
| 50 | SONG Shaokun, ZHAO Tingting, ZHU Wanting, et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20828-20837. |
| 51 | 郭制安, 隋智慧, 李亚萍, 等. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
| GUO Zhian, SUI Zhihui, LI Yaping, et al. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659. | |
| 52 | OLSON L, LOTHIAN C, ÅDÉN U, et al. Phase-changing Glauber salt solution for medical applications in the 28~32℃ interval[J]. Materials (Basel, Switzerland), 2021, 14(23): 7106. |
| 53 | PRASHANTHA Y N, SUMAN RAO P N, NESARGI Saudamini, et al. Therapeutic hypothermia for moderate and severe hypoxic ischaemic encephalopathy in newborns using low-cost devices-ice packs and phase changing material[J]. Paediatrics and International Child Health, 2019, 39(4): 234-239. |
| 54 | ZHANG Qi, WU Yi, FANG Xiaoming, et al. A recyclable thermochromic elastic phase change oleogel for cold compress therapy[J]. Applied Thermal Engineering, 2017, 124: 1224-1232. |
| 55 | 聂瑞, 王飞腾, 陈丽红. 建筑用相变微胶囊/硅藻土复合材料的制备及性能研究[J]. 合成材料老化与应用, 2021, 50(4): 97-98, 113. |
| NIE Rui, WANG Feiteng, CHEN Lihong. Preparation and properties of phase change microcapsules/diatomite composites for building[J]. Synthetic Materials Aging and Application, 2021, 50(4): 97-98, 113. | |
| 56 | WANG Xu, YU Hang, LI Lu, et al. Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs)[J]. Energy and Buildings, 2016, 128: 567-574. |
| 57 | FU Lulu, WANG Qianhao, YE Rongda, et al. A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation[J]. Renewable Energy, 2017, 114: 733-743. |
| 58 | AKEIBER Hussein J, HOSSEINI Seyed Ehsan, HUSSEN Hasanen M, et al. Thermal performance and economic evaluation of a newly developed phase change material for effective building encapsulation[J]. Energy Conversion and Management, 2017, 150: 48-61. |
| 59 | KURDI A, ALMOATHAM N, MIRZA M, et al. Potential phase change materials in building wall construction: A review[J]. Materials (Basel, Switzerland), 2021, 14(18): 5328. |
| 60 | RAKKAPPAN Solaimalai Raja, SIVAN Suresh, AHMED Shaik Naveed, et al. Preparation, characterisation and energy storage performance study on 1-decanol-expanded graphite composite PCM for air-conditioning cold storage system[J]. International Journal of Refrigeration, 2021, 123: 91-101. |
| 61 | ERDEMIR Dogan, ALTUNTOP Necdet, ÇENGEL Yunus A. Experimental investigation on the effect of ice storage system on electricity consumption cost for a hypermarket[J]. Energy and Buildings, 2021, 251: 111368. |
| 62 | ZHENG Huifan, TIAN Guoji, ZHAO Yahui, et al. Experimental study on the preparation and cool storage performance of a phase change micro-capsule cold storage material[J]. Energy and Buildings, 2022, 262: 111999. |
| 63 | 王芳. 基于相变蓄冷技术的小型移动保鲜库设计及试验研究[D]. 杭州: 浙江科技学院, 2021. |
| WANG Fang. Design and experimental study of small mobile fresh preservation storage based on phase change cold storage technology[D]. Hangzhou: Zhejiang University of Science & Technology, 2021. | |
| 64 | 周晓棠, 李吉生, 赵庆珠. 家用空调中冰蓄冷的应用及实验研究[J]. 制冷学报, 2001(3): 1-4. |
| ZHOU Xiaotang, LI Jisheng, ZHAO Qingzhu. Experimental study on residential ice-storage air conditioning system[J]. Refrigeration Journal, 2001(3): 1-4. | |
| 65 | Javier BATLLES F, GIL Bartosz, USHAK Svetlana, et al. Development and results from application of PCM-based storage tanks in a solar thermal comfort system of an institutional building: A case study[J]. Energies, 2020, 13(15): 3877. |
| 66 | Peter SIVÁK, Peter TAUŠ, Radim RYBÁR, et al. Analysis of the combined ice storage (PCM) heating system installation with special kind of solar absorber in an older house[J]. Energies, 2020, 13(15): 3878. |
| 67 | AFSHARPANAH F, CHERAGHIAN G, AKBARZADEH HAMEDANI F, et al. Utilization of carbon-based nanomaterials and plate-fin networks in a cold PCM container with application in air conditioning of buildings[J]. Nanomaterials (Basel, Switzerland), 2022, 12(11): 1927. |
| 68 | ZHENG Lin, ZHANG Wei, LIANG Fei. A review about phase change material cold storage system applied to solar-powered air-conditioning system[J]. Advances in Mechanical Engineering, 2017, 9(6). |
| 69 | HUANG Bin, ZHENG Ziao, LU Gaofeng, et al. Design and experimental investigation of a PCM based cooling storage unit for emergency cooling in data center[J]. Energy and Buildings, 2022, 259: 111871. |
| 70 | MA Xiaowei, ZHANG Quan, ZOU Sikai. An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center[J]. Energy, 2022, 253: 123946. |
| 71 | LIANG Lin, CHEN Xi. Preparation and thermal properties of eutectic hydrate salt phase change thermal energy storage material[J]. International Journal of Photoenergy, 2018, 2018: 6432047. |
| 72 | 李夔宁, 郭宁宁, 王贺. 有机相变蓄冷复合材料的研究[J]. 化工新型材料, 2009, 37(4): 87-88. |
| LI Kuining, GUO Ningning, WANG He. Research on the organic phase change material for energy storage[J]. New Chemical Materials, 2009, 37(4): 87-88. | |
| 73 | JAGADEESWARA REDDY Vennapusa, AKHILA Konala, DIXIT Prakhar, et al. Thermal buffering performance evaluation of fatty acids blend/fatty alcohol based eutectic phase change material and simulation[J]. Journal of Energy Storage, 2021, 38: 102499. |
| 74 | CHEN Xiao, CHENG Piao, TANG Zhaodi, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J].Advanced Science, 2021, 8(9): 2001274. |
| 75 | XU Xiaofeng, ZHANG Xuelai. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage[J]. Journal of Food Engineering, 2021, 292: 110286. |
| 76 | CHEN Jiajie, LING Ziye, FANG Xiaoming, et al. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage[J]. Energy Conversion and Management, 2015, 105: 817-825. |
| 77 | LIU Lingkun, SU Di, TANG Yaojie, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 305-317. |
| 78 | MEHRA Nitin, MU Liwen, JI Tuo, et al. Thermal transport in polymeric materials and across composite interfaces[J]. Applied Materials Today, 2018, 12: 92-130. |
| 79 | LIN Niangzhi, LI Chuanchang, ZHANG Dongyao, et al. Enhanced cold storage performance of Na2SO4·10H2O/expanded graphite composite phase change materials[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 101596. |
| 80 | MOUSAVI Soroush, KASAEIAN Alibakhsh, SHAFII Mohammad Behshad, et al. Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system[J]. Energy Conversion and Management, 2018, 163: 187-195. |
| 81 | HE Qinbo, WANG Shuangfeng, TONG Mingwei, et al. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage[J]. Energy Conversion and Management, 2012, 64: 199-205. |
| 82 | 朱思贤, 邹得球, 鲍家明, 等. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082. |
| ZHU Sixian, ZOU Deqiu, BAO Jiaming, et al. Supercooling characteristics and its adjustment of phase change material: A review[J]. Materials Reports, 2020, 34(19): 19075-19082. | |
| 83 | PUUPPONEN Salla, Ari SEPPÄLÄ. Cold-crystallization of polyelectrolyte absorbed polyol for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 180: 59-66. |
| 84 | FAUCHEUX Matthieu, MULLER Guillaume, HAVET Michel, et al. Influence of surface roughness on the supercooling degree: Case of selected water/ethanol solutions frozen on aluminium surfaces[J]. International Journal of Refrigeration, 2006, 29(7): 1218-1224. |
| 85 | 袁新辉, 崔文彬, 孙建航, 等. 相变蓄热材料成核触发方法和机理综述[J]. 化工新型材料, 2022, 50(11): 49-55. |
| YUAN Xinhui, CUI Wenbin, SUN Jianhang, et al. Review of methods and mechanisms for triggering nucleation of phase-change heat storage materials[J]. New Chemical Materials, 2022, 50(11): 49-55. | |
| 86 | SHAMSEDDINE I, PENNEC F, BIWOLE P, et al. Supercooling of phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112172. |
| 87 | WU Tong, XIE Ning, NIU Junyi, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. |
| 88 | TANG Aikun, CHEN Wenchao, SHAO Xia, et al. Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management[J]. International Journal of Energy Research, 2022, 46(9): 12737-12757. |
| 89 | ZOU Ting, FU Wanwan, LIANG Xianghui, et al. Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage[J]. International Journal of Refrigeration, 2019, 101: 117-124. |
| 90 | ZHANG Bo, HE Zhenhui. The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling[J]. Thermochimica Acta, 2019, 674: 52-57. |
| 91 | LIU Yudong, WANG Jiangqing, SU Chuangjian, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids[J]. Applied Thermal Engineering, 2017, 115: 1226-1236. |
| 92 | ZHANG Chenglin, LI Lei, YANG Xiaohu, et al. Study on the nucleating agents for gallium to reduce its supercooling[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119055. |
| 93 | WANG Jiawei, JIA Xilai, ATINAFU Dimberu G, et al. Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat[J]. Journal of Materials Chemistry A, 2017, 5(46): 24321-24328. |
| 94 | FEI Hua, DU Wenqing, HE Qian, et al. Study of phase-transition characteristics of new composite phase change materials of capric acid-palmitic acid/expanded graphite[J]. ACS Omega, 2020, 5(42): 27522-27529. |
| 95 | SHAHBAZ K, ALNASHEF I M, LIN R J T, et al. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 147-154. |
| 96 | ZHANG Chao, ZHANG Zeyu, YE Rongda, et al. Characterization of MgCl2·6H2O-based eutectic/expanded perlite composite phase change material with low thermal conductivity[J]. Materials (Basel, Switzerland), 2018, 11(12): 2369. |
| 97 | IKUTEGBE Charles A, Refat AL-SHANNAQ, FARID Mohammed M. Microencapsulation of low melting phase change materials for cold storage applications[J]. Applied Energy, 2022, 321: 119347. |
| 98 | Eszter HAJBA-HORVÁTH, Bence NÉMETH, László TRIF, et al. Low temperature energy storage by bio-originated calcium alginate-octyl laurate microcapsules[J]. Journal of Thermal Analysis and Calorimetry, 2022: 1-10. |
| 99 | HIMASHREE P, SENGAR Animesh Singh, SUNIL C K. Food thickening agents: Sources, chemistry, properties and applications: A review[J]. International Journal of Gastronomy and Food Science, 2022, 27: 100468. |
| 100 | HE Meizhi, YANG Luwei, ZHANG Zhentao. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 022058. |
| 101 | 刘超. 六水氯化钙重结晶的相分层机理和控制研究[J]. 中国建材科技, 2015, 24(3): 52-53. |
| LIU Chao. Study on stratification mechanism and conformity of calcium chloride hexahydrate during recrystallization[J]. China Building Materials Science & Technology, 2015, 24(3): 52-53. | |
| 102 | 杨晋, 殷勇高, 陈万河, 等. 硫酸钠水合盐相变蓄冷材料的制备及性能优化[J]. 化工进展, 2022, 41(11): 5977-5985. |
| YANG Jin, YIN Yonggao, CHENG Wanghe,et al. Preparation and performance optimization of sodium sulfate hydrate phase change thermal storage materials[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5977-5985. | |
| 103 | ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: Materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120. |
| 104 | SAITO Akio. Recent advances in research on cold thermal energy storage[J]. International Journal of Refrigeration, 2002, 25(2): 177-189. |
| 105 | 杨光, 胡仰耆, 郑乐晓. 盘管式内、外融冰系统技术运用差别分析[J]. 暖通空调, 2010, 40(6): 76-81. |
| YANG Guang, HU Yangqi, ZHENG Lexiao. Analysis of differences between internal-melt and external-melt types of ice-on-coil thermal storage system technology in application[J]. Heating Ventilating & Air Conditioning, 2010, 40(6): 76-81. | |
| 106 | 翟淼. 静态制冰和动态制冰蓄冷空调系统综合节能分析研究[D]. 上海: 同济大学, 2009. |
| DI Miao. Comprehensive energy saving analysis of static ice making and dynamic ice storage air conditioning systems[D]. Shanghai: Tongji University, 2009. | |
| 107 | SADEGHIANJAHROMI Ali, WANG Chichuan. Heat transfer enhancement in fin-and-tube heat exchangers: A review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470. |
| 108 | HAWLADER M N A, WAHED M A. Analyses of ice slurry formation using direct contact heat transfer[J]. Applied Energy, 2009, 86(7/8): 1170-1178. |
| 109 | WIJEYSUNDERA N E, HAWLADER M N A, ANDY Chan Wee Boon, et al. Ice-slurry production using direct contact heat transfer[J]. International Journal of Refrigeration, 2004, 27(5): 511-519. |
| 110 | 王凌士, 张学军, 王晓蕾, 等. LNG冷能用于气体直接接触法制取冰浆研究[J]. 低温工程, 2012(2): 26-30. |
| WANG Lingshi, ZHANG Xuejun, WANG Xiaolei, et al. Study on ice slurry production by air direct contact method on basis of utilizing LNG cold energy[J]. Cryogenics, 2012(2): 26-30. | |
| 111 | FUMOTO Koji, SATO Toshiki, KAWANAMI Tsuyoshi, et al. Ice slurry generation for direct contact cooling[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021007. |
| 112 | KAUFFELD M, WANG M J, GOLDSTEIN V, et al. Ice slurry applications[J]. International Journal of Refrigeration, 2010, 33(8): 1491-1505. |
| 113 | LOU Xujing, WANG Hui. Role of copper foam on solidification performance of ice-cool storage sphere system[J]. Journal of Energy Storage, 2022, 47: 103552. |
| 114 | RAJAN Ambi Banu Kalai, ANANDAN Shanmuga Sundaram. Performance analysis of cold storage system with nanofiller phase change material[J]. Biomass Conversion and Biorefinery, 2021: 1-10. |
| 115 | Refat AL-SHANNAQ, YOUNG Brent, FARID Mohammed. Cold energy storage in a packed bed of novel graphite/PCM composite spheres[J]. Energy, 2019, 171: 296-305. |
| 116 | SHAO Jingjing, DARKWA Jo, ZHANG Xinlu. Numerical investigations into thermal performance of phase change emulsion in a fin-and-tube heat exchanger[J]. International Journal of Low-Carbon Technologies, 2021, 16(3): 998-1007. |
| 117 | SAFARI Vahid, KAMKARI Babak, ABOLGHASEMI Hossein. Investigation of the effects of shell geometry and tube eccentricity on thermal energy storage in shell and tube heat exchangers[J]. Journal of Energy Storage, 2022, 52: 104978. |
| 118 | Merve GÖLTAŞ, Barış GÜREL, Ali KEÇEBAŞ, et al. Thermo-hydraulic performance improvement with nanofluids of a fish-gill-inspired plate heat exchanger[J]. Energy, 2022, 253: 124207. |
| 119 | 黄江常. 水/膨胀石墨复合相变材料的制备及其管翅式蓄冷器性能研究[D]. 广州: 华南理工大学, 2021. |
| HUANG Jiangchang. Preparation of water/expanded graphite composite phase change material and study on its tube-fin cold storage device[D]. Guangzhou: South China University of Technology, 2021. | |
| 120 | FENG Jinxin, LING Ziye, HUANG Jiangchang, et al. Experimental research and numerical simulation of the thermal performance of a tube-fin cold energy storage unit using water/modified expanded graphite as the phase change material[J]. Energy Storage and Saving, 2022, 1(2): 71-79. |
| 121 | NÓBREGA Cláudia R E S, ISMAIL Kamal A R, LINO Fátima A M. Thermal performance of bare and finned tubes submersed in nano-PCM mixture[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 1-14. |
| 122 | GOYAL Anurag, KOZUBAL E, WOODS J, et al. Design and performance evaluation of a dual-circuit thermal energy storage module for air conditioners[J].Applied Energy,2021, 292: 116843. |
| [1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
| [2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
| [3] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
| [4] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
| [5] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
| [6] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
| [7] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
| [8] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
| [9] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
| [10] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
| [11] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
| [12] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
| [13] | ZHANG Yingjie, LU Jiayue, WANG Fanggang. Synthesis of a new MCER and its performance in removing Cu(Ⅱ) from water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5558-5566. |
| [14] | LIU Haicheng, MENG Wushuang, HUANG Zhe, YOU Yu, HUA Ruiqi, CAO Mengru. Preparation of WO3/BiOCl0.7I0.3 photocatalyst and its photocatalytic degradation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 255-264. |
| [15] | PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |