1 |
PERMATASARI F A, IRHAM M A, BISRI S Z, et al. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges[J]. Nanomaterials, 2021, 11(1): E91.
|
2 |
YUE Xiaoming, PENG Cheng, XU Jing, et al. Preparation of carbon electrodes from alkaline extraction of lignite for double-layer capacitors[J]. Ionics, 2021, 27(8): 3605-3614.
|
3 |
杨芳, 刘晨, 杨绍斌, 等. 用于超级电容器的煤基活性炭电极材料的研究进展[J]. 硅酸盐学报, 2019, 47(10): 1499-1508.
|
|
YANG Fang, LIU Chen, YANG Shaobin, et al. Research progress on coal-based activated carbon electrode material for supercapacitor[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1499-1508.
|
4 |
SHI Ming, XIN Yanfei, CHEN Xinxing, et al. Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 859: 157856.
|
5 |
LI Keke, LIU Guoyang, ZHENG Lisi, et al. Coal-derived carbon nanomaterials for sustainable energy storage applications[J]. New Carbon Materials, 2021, 36(1): 133-154.
|
6 |
CHEN Di, JIANG Kai, HUANG Tingting, et al. Recent advances in fiber supercapacitors: Materials, device configurations, and applications[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(5): e1901806.
|
7 |
DONG Duo, ZHANG Yongsheng, XIAO Yi, et al. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials[J]. Journal of Colloid and Interface Science, 2020, 580: 77-87.
|
8 |
解强, 张香兰, 梁鼎成, 等. 煤基活性炭定向制备: 原理·方法·应用[J]. 煤炭科学技术, 2021, 49(1): 100-127.
|
|
XIE Qiang, ZHANG Xianglan, LIANG Dingcheng, et al. Directional preparation of coal-based activated carbon: Principles, approaches and applications[J]. Coal Science and Technology, 2021, 49(1): 100-127.
|
9 |
邢宝林. 超级电容器用低阶煤基活性炭的制备及电化学性能研究[D]. 焦作: 河南理工大学, 2011.
|
|
XING Baolin. Preparation and electrochemical performance of low-rank coal based activated carbon for supercapacitor[D]. Jiaozuo: Henan Polytechnic University, 2011.
|
10 |
侯彩霞, 孔碧华, 樊丽华, 等. 超级电容器用煤基活性炭研究[J]. 洁净煤技术, 2017, 23(5): 56-61.
|
|
HOU Caixia, KONG Bihua, FAN Lihua, et al. Research in coal-based activated carbon for supercapacitor[J]. Clean Coal Technology, 2017, 23(5): 56-61.
|
11 |
林国鑫, 于馨凝, 刘少俊, 等. 煤质成分对煤基活性炭活化成孔的影响机制[J]. 燃烧科学与技术, 2020, 26(1): 81-86.
|
|
LIN Guoxin, YU Xinning, LIU Shaojun, et al. Influence mechanism of coal composition on activation pore formation of coal-based activated carbon[J]. Journal of Combustion Science and Technology, 2020, 26(1): 81-86.
|
12 |
邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222.
|
|
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222.
|
13 |
ZHANG Chuanxiang, LONG Donghui, XING Baolin, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications, 2008, 10(11): 1809-1811.
|
14 |
LI Lijun, WANG Xiaoyan, WANG Shujuan, et al. Activated carbon prepared from lignite as supercapacitor electrode materials[J]. Electroanalysis, 2016, 28(1): 243-248.
|
15 |
HAN Gaoxu, JIA Jianbo, LIU Quanrun, et al. Template-activated bifunctional soluble salt ZnCl2 assisted synthesis of coal-based hierarchical porous carbon for high-performance supercapacitors[J]. Carbon, 2022, 186: 380-390.
|
16 |
王凯, 高超, 李松恩, 等. 煤质沥青基超级活性炭的提质处理及其电化学性能的研究[J]. 新型炭材料, 2018, 33(6): 562-570.
|
|
WANG Kai, GAO Chao, LI Songen, et al. Electrochemical performance of high surface area activated carbons derived from coal tar pitch[J]. New Carbon Materials, 2018, 33(6): 562-570.
|
17 |
郭秉霖, 侯彩霞, 樊丽华, 等. 萃取温度对无灰煤结构及煤基活性炭电化学性能的影响[J]. 无机化学学报, 2018, 34(9): 1615-1624.
|
|
GUO Binglin, HOU Caixia, FAN Lihua, et al. Effect of extraction temperature on hyper-coal structure and electrochemistry of coal-based activated carbon[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(9): 1615-1624.
|
18 |
裴卫兵, 邢宝林, 黄光许, 等. 预炭化时间对煤基活性炭孔结构及电化学性能的影响[J]. 洁净煤技术, 2013, 19(3): 42-45, 64.
|
|
PEI Weibing, XING Baolin, HUANG Guangxu, et al. Influence of carbonization time on pore struture and electrochemical performance of coal-based activated carbon[J]. Clean Coal Technology, 2013, 19(3): 42-45, 64.
|
19 |
薄纯辉, 姜维佳, 王玉高, 等. 煤基碳量子点合成研究进展[J]. 应用化学, 2021, 38(7): 767-788.
|
|
BO Chunhui, JIANG Weijia, WANG Yugao, et al. Research progress on synthesis of coal-based carbon quantum dots[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 767-788.
|
20 |
ZHANG Bo, MAIMAITI Halidan, ZHANG Dedong, et al. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345: 54-62.
|
21 |
CAI Tingting, LIU Bin, PANG Ernan, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials, 2020, 35(6): 646-666.
|
22 |
张伟, 安兴业, 刘利琴, 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783.
|
|
ZHANG Wei, AN Xingye, LIU Liqin, et al. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783.
|
23 |
XING Baolin, HUANG Guangxu, CHEN Zhengfei, et al. Facile preparation of hierarchical porous carbons for supercapacitors by direct carbonization of potassium humate[J]. Journal of Solid State Electrochemistry, 2017, 21(1): 263-271.
|
24 |
张传祥, 张睿, 成果, 等. 煤基活性炭电极材料的制备及电化学性能[J]. 煤炭学报, 2009, 34(2): 252-256.
|
|
ZHANG Chuanxiang, ZHANG Rui, CHENG Guo, et al. Preparation and electrochemical properties of coal-based activated carbons[J]. Journal of China Coal Society, 2009, 34(2): 252-256.
|
25 |
STRAUSS Volker, MARSH Kris, KOWAL Matthew D, et al. A simple route to porous graphene from carbon nanodots for supercapacitor applications[J]. Advanced Materials, 2018, 30(8): 1704449.
|
26 |
朱家瑶, 董玥, 张苏, 等. 炭-/石墨烯量子点在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2): 1903052.
|
|
ZHU Jiayao, DONG Yue, ZHANG Su, et al. Application of carbon-/graphene quantum dots for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052.
|
27 |
马爱玲, 黄光许, 耿乾浩, 等. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396.
|
|
MA Ailing, HUANG Guangxu, GENG Qianhao, et al. Preparation and electrochemical properties of B/N co-doped porous carbon nanosheets[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4388-4396.
|
28 |
GAO Shasha, TANG Yakun, WANG Lei, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263.
|
29 |
WANG Lijie, SUN Fei, GAO Jihui, et al. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91: 588-596.
|
30 |
YAO Youheng, HUANG Guangxu, LIU Yingbin, et al. Facile synthesis of B/N co-doped porous carbon nanosheets with high heteroatom content and electrical conductivity for excellent-performance supercapacitors[J]. Applied Surface Science, 2022, 580: 152236.
|
31 |
王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750.
|
|
WANG Boyang, XIA Jili, DONG Xiaoling, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750.
|
32 |
DENG Jun, BAI Zujin, XIAO Yang, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246: 160-168.
|
33 |
ZHANG Su, ZHU Jiayao, QING Yan, et al. Ultramicroporous carbons puzzled by graphene quantum dots: Integrated high gravimetric, volumetric, and areal capacitances for supercapacitors[J]. Advanced Functional Materials, 2018, 28(52): 1805898.
|
34 |
YAGLIKCI Savas, GOKCE Yavuz, YAGMUR Emine, et al. Does high sulphur coal have the potential to produce high performance-low cost supercapacitors?[J]. Surfaces and Interfaces, 2021, 22: 100899.
|
35 |
DONG Xiaoxi, WANG Jingyue, YAN Meifang, et al. Hierarchically Fe-doped porous carbon derived from phenolic resin for high performance supercapacitor[J]. Ceramics International, 2021, 47(5): 5998-6009.
|
36 |
ZHANG Hongyue, WANG Bolun, YU Xiaowei, et al. Carbon dots in porous materials: Host-guest synergy for enhanced performance[J]. Angewandte Chemie International Edition, 2020, 59(44): 19390-19402.
|
37 |
WANG Dawei, LI Feng, LIU Min, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition, 2009, 48(9): 1525.
|
38 |
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors[J]. Journal of Porous Materials, 2016, 23(1): 67-73.
|
39 |
DONG Duo, ZHANG Yongsheng, XIAO Yi, et al. Oxygen-enriched coal-based porous carbon under plasma-assisted MgCO3 activation as supercapacitor electrodes[J]. Fuel, 2022, 309: 122168.
|
40 |
HE Yitao, WANG Luxiang, JIA Dianzeng. Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity[J]. Electrochimica Acta, 2016, 194: 239-245.
|
41 |
YUE Xiaoming, AN Zhaoyang, YE Mei, et al. Preparation of porous activated carbons for high performance supercapacitors from Taixi anthracite by multi-stage activation[J]. Molecules, 2019, 24(19): 3588.
|
42 |
TAN Shuai, KRAUS Theodore John, LI-OAKEY Katie Dongmei. Understanding the supercapacitor properties of electrospun carbon nanofibers from Powder River Basin coal[J]. Fuel, 2019, 245: 148-159.
|
43 |
徐园园, 陆倩, 木沙江, 等. 煤基多孔炭的制备及其在超级电容器中的应用[J]. 煤炭转化, 2016, 39(1): 76-81.
|
|
XU Yuanyuan, LU Qian, MU Shajiang, et al. Preparation of coal-based porous carbon and utilization in supercapacitor[J]. Coal Conversion, 2016, 39(1): 76-81.
|
44 |
QU Wenhui, GUO Yubo, SHEN Wenzhong, et al. Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors[J]. The Journal of Physical Chemistry C, 2016, 120(28): 15105-15113.
|