Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2678-2690.DOI: 10.16085/j.issn.1000-6613.2022-1369
• Resources and environmental engineering • Previous Articles Next Articles
LI Huahua(), LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an()
Received:
2022-07-21
Revised:
2022-09-03
Online:
2023-06-02
Published:
2023-05-10
Contact:
CHENG Shao’an
通讯作者:
成少安
作者简介:
李华华(1998—),女,硕士研究生,研究方向为厌氧氨氧化。E-mail:22027060@zju.edu.cn。
基金资助:
CLC Number:
LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690.
李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1369
污水类型 | 反应器构型 | 阳/阴(参比) 电极材料 | 体积(阳-阴极室)/L | 运行 模式 | 水力停留时间/h | 进水基质浓度/mg·L-1 | COD 去除率 /% | 总氮 去除率 /% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
COD | NH | NO | |||||||||
短程硝化出水 | UASB | 碳刷/碳刷(甘汞) | 1.2 | 序批 | 48 | 180~1180 | 90~520 | 110~680 | 24.4 | 71.9 | [ |
焚烧渗滤液 | SBR | 碳刷/碳刷(甘汞) | 4 | 序批 | — | 50~250 | 50~250 | — | 20~40 | 70±15 | [ |
垃圾渗滤液 | 双室MFC | 碳毡/碳毡 | 0.15~0.18 | 序批 | 144 | — | 约320 | 约420 | — | 约25 | [ |
垃圾渗滤液 | 双室MFC | 石墨棒/碳布 | — | 序批 | 24 | 约266 | 约120 | — | — | 94 | [ |
合成废水 | UASB | 石墨棒/碳毡 | 0.5 | 连续 | 6 | — | 140 | 210 | — | 99.1 | [ |
合成废水 | 双室管状MEC | 碳刷/碳布 | 0.37~1.12 | 连续 | 20~90 | 2000 | 500 | — | 98.2±3.3 | 94.8±7.7 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.08~0.08 | 序批 | 24 | 3000 | 50 | 50 | 80±2 | 73±2 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.14~0.14 | 序批 | 120 | — | 50 | 40 | — | 85 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.17~0.4 | 序批 | 11.5, 23 | 约750 | 约56 | — | 100 | 82.6±0.9 | [ |
合成废水 | 双室MFC | 石墨片/石墨片 | 0.03~0.03 | 序批 | — | 1200 | 500~1000 | — | 93 | 84 | [ |
合成废水 | 双室MFC | 碳纸/碳布 | 0.028~0.028 | 序批 | 48 | — | 400 | 528 | — | 84.4 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.4~0.4 | 序批 | 24 | 100 | 约50 | 约70 | — | 99 | [ |
污水类型 | 反应器构型 | 阳/阴(参比) 电极材料 | 体积(阳-阴极室)/L | 运行 模式 | 水力停留时间/h | 进水基质浓度/mg·L-1 | COD 去除率 /% | 总氮 去除率 /% | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
COD | NH | NO | |||||||||
短程硝化出水 | UASB | 碳刷/碳刷(甘汞) | 1.2 | 序批 | 48 | 180~1180 | 90~520 | 110~680 | 24.4 | 71.9 | [ |
焚烧渗滤液 | SBR | 碳刷/碳刷(甘汞) | 4 | 序批 | — | 50~250 | 50~250 | — | 20~40 | 70±15 | [ |
垃圾渗滤液 | 双室MFC | 碳毡/碳毡 | 0.15~0.18 | 序批 | 144 | — | 约320 | 约420 | — | 约25 | [ |
垃圾渗滤液 | 双室MFC | 石墨棒/碳布 | — | 序批 | 24 | 约266 | 约120 | — | — | 94 | [ |
合成废水 | UASB | 石墨棒/碳毡 | 0.5 | 连续 | 6 | — | 140 | 210 | — | 99.1 | [ |
合成废水 | 双室管状MEC | 碳刷/碳布 | 0.37~1.12 | 连续 | 20~90 | 2000 | 500 | — | 98.2±3.3 | 94.8±7.7 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.08~0.08 | 序批 | 24 | 3000 | 50 | 50 | 80±2 | 73±2 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.14~0.14 | 序批 | 120 | — | 50 | 40 | — | 85 | [ |
合成废水 | 双室MFC | 碳刷/碳刷 | 0.17~0.4 | 序批 | 11.5, 23 | 约750 | 约56 | — | 100 | 82.6±0.9 | [ |
合成废水 | 双室MFC | 石墨片/石墨片 | 0.03~0.03 | 序批 | — | 1200 | 500~1000 | — | 93 | 84 | [ |
合成废水 | 双室MFC | 碳纸/碳布 | 0.028~0.028 | 序批 | 48 | — | 400 | 528 | — | 84.4 | [ |
合成废水 | 双室MFC | 碳毡/碳毡 | 0.4~0.4 | 序批 | 24 | 100 | 约50 | 约70 | — | 99 | [ |
工程 | 工艺 | 污水类型 | 规模 /m3 | 脱氮速率 /kgN·m-3·d-1 | 脱氮效率 /% | 参考 文献 |
---|---|---|---|---|---|---|
传统Anammox工艺 | ||||||
荷兰鹿特丹Sluisjesdijk污水处理厂 | SHARON-Anammox | 污泥消化液 | 70 | 10 | 93 | [ |
荷兰Dokhaven污水厂 | PN/Anammox | 市政污水 | 4 | 0.097~0.223 | — | [ |
荷兰Apeldoorn污水处理厂 | DEMON | 污泥脱水液 | 2900 | 0.41 | 85 | [ |
中国梅花工业园污水处理厂Ⅰ期 | CANON | 味精废水 | 6750 | 1.63 | 90 | [ |
中试 | PN/A | 污泥消化液 | 7.2 | 0.6 | 72 | [ |
实验室 | PN/A | 养猪场废水 | 0.0045 | 3.9 | 73 | [ |
实验室 | DAMO/A | 合成废水 | 0.002356 | 1 | 99.9 | [ |
实验室 | PN-DAMO/A | 合成废水 | 0.0006 | 1.5 | 98 | [ |
Anammox-BES | ||||||
实验室 | 单室Anammox-MEC | 合成废水 | 0.0005 | 0.911 | 76 | [ |
实验室 | 单室Anammox-MEC | 固体焚烧渗滤液 | 0.004 | 0.45 | 71.9 | [ |
实验室 | 单室Anammox-MEC | 合成废水 | 0.00045 | 0.70 | 99.4 | [ |
实验室 | 单室MEC | 合成废水 | 0.0005 | 1.38 | 99.1 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.0004 | 0.1 | 99 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.000028 | 0.258 | 84.4 | [ |
工程 | 工艺 | 污水类型 | 规模 /m3 | 脱氮速率 /kgN·m-3·d-1 | 脱氮效率 /% | 参考 文献 |
---|---|---|---|---|---|---|
传统Anammox工艺 | ||||||
荷兰鹿特丹Sluisjesdijk污水处理厂 | SHARON-Anammox | 污泥消化液 | 70 | 10 | 93 | [ |
荷兰Dokhaven污水厂 | PN/Anammox | 市政污水 | 4 | 0.097~0.223 | — | [ |
荷兰Apeldoorn污水处理厂 | DEMON | 污泥脱水液 | 2900 | 0.41 | 85 | [ |
中国梅花工业园污水处理厂Ⅰ期 | CANON | 味精废水 | 6750 | 1.63 | 90 | [ |
中试 | PN/A | 污泥消化液 | 7.2 | 0.6 | 72 | [ |
实验室 | PN/A | 养猪场废水 | 0.0045 | 3.9 | 73 | [ |
实验室 | DAMO/A | 合成废水 | 0.002356 | 1 | 99.9 | [ |
实验室 | PN-DAMO/A | 合成废水 | 0.0006 | 1.5 | 98 | [ |
Anammox-BES | ||||||
实验室 | 单室Anammox-MEC | 合成废水 | 0.0005 | 0.911 | 76 | [ |
实验室 | 单室Anammox-MEC | 固体焚烧渗滤液 | 0.004 | 0.45 | 71.9 | [ |
实验室 | 单室Anammox-MEC | 合成废水 | 0.00045 | 0.70 | 99.4 | [ |
实验室 | 单室MEC | 合成废水 | 0.0005 | 1.38 | 99.1 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.0004 | 0.1 | 99 | [ |
实验室 | 双室阳极Anammox-MFC | 合成废水 | 0.000028 | 0.258 | 84.4 | [ |
1 | XU Dong, LI Yang, YIN Lifeng, et al. Electrochemical removal of nitrate in industrial wastewater[J]. Frontiers of Environmental Science & Engineering, 2018, 12(1): 9. |
2 | PROSNANSKY M, SAKAKIBARA Y, KURODA M. High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration[J]. Water Research, 2002, 36(19): 4801-4810. |
3 | MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. |
4 | 李旖瑜. 厌氧氨氧化深度脱氮工艺及其微生物学机理[D]. 杭州: 浙江大学, 2021. |
LI Yiyu. ANAMMOX-based nitrogen polishing process and its microbiological mechanism[D]. Hangzhou: Zhejiang University, 2021. | |
5 | LE Tri, PENG Bo, SU Chunyang, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox[J]. Water Environment Research: A Research Publication of the Water Environment Federation, 2019, 91(11): 1455-1465. |
6 | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. |
7 | LI Yingyu, HUANG Xiaowu, LI Xiaoyan. Using anammox biofilms for rapid start-up of partial nitritation-anammox in integrated fixed-film activated sludge for autotrophic nitrogen removal[J]. Science of the Total Environment, 2021, 791: 148314. |
8 | ISAKA Kazuichi, DATE Yasuhiro, SUMINO Tatsuo, et al. Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1457-1465. |
9 | AHMAD Hafiz Adeel, GUO Beibei, ZHUANG Xuming, et al. A twilight for the complete nitrogen removal via synergistic partial-denitrification, anammox, and DNRA process[J]. Npj Clean Water, 2021, 4: 31. |
10 | KUMAR Mathava, LIN Jih-Gaw. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 1-9. |
11 | CHEN Huihui, LIU Sitong, YANG Fenglin, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2009, 100(4): 1548-1554. |
12 | CHEN Hui, MA Chun, JI Yuxin, et al. Evaluation of the efficacy and regulation measures of the anammox process under salty conditions[J]. Separation and Purification Technology, 2014, 132: 584-592. |
13 | SHAW Dario R, Muhammad ALI, KATURI Krishna P, et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria[J]. Nature Communications, 2020, 11(1): 2058. |
14 | COONEY M J, SVOBODA V, LAU C, et al. Enzyme catalysed biofuel cells[J]. Energy & Environmental Science, 2008, 1(3): 320-337. |
15 | ARECHEDERRA Robert, MINTEER Shelley D. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes[J]. Electrochimica Acta, 2008, 53(23): 6698-6703. |
16 | RABAEY Korneel, Jorge RODRÍGUEZ, BLACKALL Linda L, et al. Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. The ISME Journal, 2007, 1(1): 9-18. |
17 | LU Na, ZHOU Shungui, ZHUANG Li, et al. Electricity generation from starch processing wastewater using microbial fuel cell technology[J]. Biochemical Engineering Journal, 2009, 43(3): 246-251. |
18 | PANT Deepak, VAN BOGAERT Gilbert, DIELS Ludo, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresource Technology, 2010, 101(6): 1533-1543. |
19 | RABAEY Korneel, VERSTRAETE Willy. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298. |
20 | HOANG Anh Tuan, Sandro NIŽETIĆ, Kim Hoong NG, et al. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector[J]. Chemosphere, 2022, 287: 132285. |
21 | KONG Zhiyuan, ZHOU Yongheng, FU Zhimin, et al. Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater[J]. Chemosphere, 2022, 296: 133937. |
22 | HASSAN Muhammad, WEI Huawei, QIU Huijing, et al. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes[J]. Bioresource Technology, 2018, 247: 434-442. |
23 | LI Chao, REN Hongqiang, XU Ming, et al. Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J]. Bioresource Technology, 2015, 175: 545-552. |
24 | KOKABIAN Bahareh, GUDE Veera Gnaneswar, SMITH Renotta, et al. Evaluation of anammox biocathode in microbial desalination and wastewater treatment[J]. Chemical Engineering Journal, 2018, 342: 410-419. |
25 | GHIMIRE Umesh, GUDE Veera Gnaneswar, SMITH Renotta, et al. Co-existing Anammox, ammonium-oxidizing, and nitrite-oxidizing bacteria in biocathode-biofilms enable energy-efficient nitrogen removal in a bioelectrochemical desalination process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(14): 4967-4979. |
26 | ZHANG Luan, JIANG Minghe, ZHOU Shungui. Conversion of nitrogen and carbon in enriched paddy soil by denitrification coupled with anammox in a bioelectrochemical system[J]. Journal of Environmental Sciences, 2022, 111: 197-207. |
27 | LIU Hong, GROT Stephen, LOGAN Bruce E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11): 4317-4320. |
28 | CHENG Shaoan, LOGAN Bruce E. Sustainable and efficient biohydrogen production via electrohydrogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18871-18873. |
29 | CHENG Shaoan, XING Defeng, CALL Douglas F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. |
30 | YIN Xin, QIAO Sen, ZHOU Jiti, et al. Using three-bio-electrode reactor to enhance the activity of anammox biomass[J]. Bioresource Technology, 2015, 196: 376-382. |
31 | QIAO Sen, YIN Xin, ZHOU Jiti, et al. Integrating anammox with the autotrophic denitrification process via electrochemistry technology[J]. Chemosphere, 2018, 195: 817-824. |
32 | ZHU Tingting, ZHANG Yaobin, BU Guanhong, et al. Producing nitrite from anodic ammonia oxidation to accelerate anammox in a bioelectrochemical system with a given anode potential[J]. Chemical Engineering Journal, 2016, 291: 184-191. |
33 | HE Zhen, KAN Jinjun, WANG Yanbing, et al. Electricity production coupled to ammonium in a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3391-3397. |
34 | ZHAN Guoqiang, ZHANG Lixia, TAO Yong, et al. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems[J]. Electrochimica Acta, 2014, 135: 345-350. |
35 | QU Bo, FAN Bin, ZHU Shikun, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1): 100-105. |
36 | LI Yan, XU Zhiheng, CAI Dingyi, et al. Self-sustained high-rate anammox: From biological to bioelectrochemical processes[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 1022-1031. |
37 | YANG Yuli, LI Xiaojin, YANG Xiaoli, et al. Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system[J]. Bioresource Technology, 2017, 238: 22-29. |
38 | QIAO Liang, YUAN Ye, MEI Chang, et al. Reinforced nitrite supplement by cathode nitrate reduction with a bio-electrochemical system coupled anammox reactor[J]. Environmental Research, 2022, 204: 112051. |
39 | LIU Zhao, SUN Dezhi, TIAN Haozhong, et al. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system[J]. Bioresource Technology, 2019, 285: 121311. |
40 | 许明熠. 耦合厌氧氨氧化技术的生物电化学系统同步脱氮产电机理研究及功能菌群落分析[D]. 广州: 华南理工大学, 2017. |
XU Mingyi. Study on reactor’s performance and bacterial colony analysis of integrated bioelectrochemical-anammox system for simultaneous nitrogen treatment and bioenergy production[D]. Guangzhou: South China University of Technology, 2017. | |
41 | RINALDI Antonio, MECHERI Barbara, GARAVAGLIA Virgilio, et al. Engineering materials and biology to boost performance of microbial fuel cells: A critical review[J]. Energy & Environmental Science, 2008, 1(4): 417-429. |
42 | GUO Kun, Antonin PRÉVOTEAU, PATIL Sunil A, et al. Engineering electrodes for microbial electrocatalysis[J]. Current Opinion in Biotechnology, 2015, 33: 149-156. |
43 | SANTORO Carlo, ARBIZZANI Catia, ERABLE Benjamin, et al. Microbial fuel cells: From fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356: 225-244. |
44 | GUO Kun, SOERIYADI Alexander H, FENG Huajun, et al. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems[J]. Bioresource Technology, 2015, 195: 46-50. |
45 | HEIJNE Annemiek TER, HAMELERS Hubertus V M, SAAKES Michel, et al. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells[J]. Electrochimica Acta, 2008, 53(18): 5697-5703. |
46 | YOU Jiseon, SANTORO Carlo, GREENMAN John, et al. Micro-porous layer (MPL)-based anode for microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21811-21818. |
47 | ZHANG Changyong, LIANG Peng, JIANG Yong, et al. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode[J]. Journal of Power Sources, 2015, 273: 580-583. |
48 | WANG Xin, CHENG Shaoan, FENG Yujie, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874. |
49 | WEI Jincheng, LIANG Peng, HUANG Xia. Recent progress in electrodes for microbial fuel cells[J]. Bioresource Technology, 2011, 102(20): 9335-9344. |
50 | ZHOU Minghua, CHI Meiling, WANG Hongyu, et al. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells[J]. Biochemical Engineering Journal, 2012, 60: 151-155. |
51 | KOFFI N’Dah Joel, OKABE Satoshi. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell[J]. Chemosphere, 2021, 274: 129715. |
52 | 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014. |
ZHANG Jiqiang. Simultaneous nitrogen removal and electricity generation in microbial fuel cell and its mechanism[D]. Hangzhou: Zhejiang University, 2014. | |
53 | JETTEN Mike S M, STROUS Marc, VAN DE PAS-SCHOONEN Katinka T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. |
54 | 林朱凡, 成少安, 毛政中, 等. 生物电化学脱氮系统构建和影响因素的最新研究进展[J]. 化工进展, 2020, 39(9): 3766-3776. |
LIN Zhufan, CHENG Shaoan, MAO Zhengzhong, et al. Recent advances in the construction and influencing factors of bio-electrochemical nitrogen removal systems[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3766-3776. | |
55 | 刘松山. 生物阴极双室微生物燃料电池同步除碳脱氮与产电特性研究[D]. 上海: 东华大学, 2014. |
LIU Songshan. Characteristics of simultaneous carbon and nitrogen removal and electricity generation in a two-chamber biocathode microbial fuel cell[D]. Shanghai: Donghua University, 2014. | |
56 | 谢作甫, 郑平, 张吉强, 等. 产电微生物及其生理生化特性[J]. 科技通报, 2013, 29(7): 56-63. |
XIE Zuofu, ZHENG Ping, ZHANG Jiqiang, et al. The electricigens and their physiological and biochemical characteristics[J]. Bulletin of Science and Technology, 2013, 29(7): 56-63. | |
57 | EGLI Konrad, FANGER Urs, ALVAREZ Pedro J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Archives of Microbiology, 2001, 175(3): 198-207. |
58 | CHIU Ying Chih, LEE Liling, CHANG Chengnan, et al. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 1-7. |
59 | VIRDIS Bernardino, RABAEY Korneel, ROZENDAL René A, et al. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells[J]. Water Research, 2010, 44(9): 2970-2980. |
60 | PAINTER H A. Microbial transformations of inorganic nitrogen[J]. Progress Water Technology, 1977, 8(4/5): 3-29. |
61 | GUO Yanli, WEI Xia, ZHANG Shaohui. Simultaneous removal of organics, sulfide and ammonium coupled with electricity generation in a loop microbial fuel cell system[J]. Bioresource Technology, 2020, 305: 123082. |
62 | 闫荣, 雷欣, 慕玉洁, 等. 后续碳源强化ANAMMOX-MFC系统脱氮产电调控策略[J]. 环境工程, 2021, 39(9): 76-83. |
YAN Rong, LEI Xin, MU Yujie, et al. Control strategy of subsequent carbon source in ANAMMOX-MFC system for enhancement nitrogen removal and power generation[J]. Environmental Engineering, 2021, 39(9): 76-83. | |
63 | 祖波, 马兰, 刘波, 等. 有机物对厌氧氨氧化微生物燃料电池脱氮产电性能的影响[J]. 环境科学, 2018, 39(8): 3937-3945. |
ZU Bo, MA Lan, LIU Bo, et al. Effects of organic substrates on ANAMMOX-MFC denitrification electrogenesis performance[J]. Environmental Science, 2018, 39(8): 3937-3945. | |
64 | DING Aqiang, ZHAO Dan, DING Feng, et al. Effect of inocula on performance of bio-cathode denitrification and its microbial mechanism[J]. Chemical Engineering Journal, 2018, 343: 399-407. |
65 | WANG Han, FAN Yufei, ZHOU Mingda, et al. Function of Fe(Ⅲ)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses[J]. Water Research, 2022, 210: 117998. |
66 | ZHANG Qian, CHENG Yafei, HUANG Baocheng, et al. A review of heavy metals inhibitory effects in the process of anaerobic ammonium oxidation[J]. Journal of Hazardous Materials, 2022, 429: 128362. |
67 | DAPENA-MORA A, FERNÁNDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40(4): 859-865. |
68 | SU Yang, YANG Hong, WANG Xiaotong, et al. Response of microbial succession of Anammox granular sludge (AnGS) and essential abundance under salty stress and temperature reduction[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106834. |
69 | ZHANG Zhengzhe, XU Jiajia, HU Haiyan, et al. Insight into the short- and long-term effects of inorganic phosphate on anammox granule property[J]. Bioresource Technology, 2016, 208: 161-169. |
70 | Filip GAMOŃ, Anna BANACH-WIŚNIEWSKA, KAUR Jaspreet Jandoo, et al. Microbial response of the anammox process to trace antibiotic concentration[J]. Journal of Water Process Engineering, 2022, 46: 102607. |
71 | ZHANG Qianqian, JI Xiaoming, TIAN Guangming, et al. Evolution of microbial community and antibiotic resistance genes in anammox process stressed by oxytetracycline and copper[J]. Bioresource Technology, 2021, 319: 124106. |
72 | LU Xinxin, WANG Yi, WANG Wenhuai, et al. Characteristics of rapid-biofiltering anammox reactor (RBAR) for low nitrogen wastewater treatment[J]. Bioresource Technology, 2020, 318: 124066. |
73 | XU Suyun, ZHANG Yuqing, DUAN Yuting, et al. Simultaneous removal of nitrate/nitrite and ammonia in a circular microbial electrolysis cell at low C/N ratios[J]. Journal of Water Process Engineering, 2021, 40: 101938. |
74 | WU Yun, YANG Qing, ZENG Qingnan, et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode[J]. Chemical Engineering Journal, 2017, 316: 315-322. |
75 | 刘钊, 党岩, 田皓中, 等. 外加电势强化厌氧氨氧化工艺处理垃圾焚烧渗沥液短程硝化出水[J]. 环境工程学报, 2019, 13(7): 1670-1677. |
LIU Zhao, DANG Yan, TIAN Haozhong, et al. Enhanced biotreatment of partial nitrified incineration leachate by applying electric potential in anammox system[J]. Chinese Journal of Environmental Engineering, 2019, 13(7): 1670-1677. | |
76 | LEE Yongwoo, MARTIN Lee, GRASEL Peter, et al. Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology[J]. Environmental Technology, 2013, 34(17/18/19/20): 2727-2736. |
77 | ZEKKER Ivar, BHOWMICK Gourav Dhar, PRIKS Hans, et al. Anammox-denitrification biomass in microbial fuel cell to enhance the electricity generation and nitrogen removal efficiency[J]. Biodegradation, 2020, 31(4): 249-264. |
78 | 许明熠, 周少奇, 刘泽珺, 等. 耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究[J]. 环境科学学报, 2017, 37(1): 154-161. |
XU Mingyi, ZHOU Shaoqi, LIU Zejun, et al. Study on performance of dual-chamber MFC coupled with Anammox process in a high nitrogen load circumstance[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 154-161. | |
79 | CHEN Rong, JI Jiayuan, CHEN Yujie, et al. Successful operation performance and syntrophic micro-granule in partial nitritation and anammox reactor treating low-strength ammonia wastewater[J]. Water Research, 2019, 155: 288-299. |
80 | ZHOU Xin, SONG Jingjing, WANG Gonglei, et al. Unravelling nitrogen removal and nitrous oxide emission from mainstream integrated nitrification-partial denitrification-anammox for low carbon/nitrogen domestic wastewater[J]. Journal of Environmental Management, 2020, 270: 110872. |
81 | LIU Tao, Zhuan Khai LIM, CHEN Hui, et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2020, 54(5): 3012-3021. |
82 | WANG Shuang, WANG Lan, DENG Liangwei, et al. Performance of autotrophic nitrogen removal from digested piggery wastewater[J]. Bioresource Technology, 2017, 241: 465-472. |
83 | 王胤, 吴嘉利, 陈一, 等. 主流厌氧氨氧化工艺的研究与应用进展[J]. 净水技术, 2021, 40(11): 16-27. |
WANG Yin, WU Jiali, CHEN Yi, et al. Research and application progress of mainstream anammox process[J]. Water Purification Technology, 2021, 40(11): 16-27. | |
84 | VAN DER STAR Wouter R L, ABMA Wiebe R, BLOMMERS Dennis, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163. |
85 | HOEKSTRA Maaike, GEILVOET Stefan P, HENDRICKX Tim L G, et al. Towards mainstream anammox: Lessons learned from pilot-scale research at WWTP Dokhaven[J]. Environmental Technology, 2019, 40(13): 1721-1733. |
86 | Alejandro GONZALEZ-MARTINEZ, OSORIO Francisco, MORILLO Jose A, et al. Comparison of bacterial diversity in full scale anammox bioreactors operated under different conditions[J]. Biotechnology Progress, 2015, 31(6): 1464-1472. |
87 | WANG Gang, XU Xiaochen, ZHOU Liang, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. |
88 | XIE Guojun, CAI Chen, HU Shihu, et al. Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J]. Environmental Science & Technology, 2017, 51(2): 819-827. |
89 | LIU Tao, HU Shihu, YUAN Zhiguo, et al. High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation[J]. Water Research, 2019, 166: 115057. |
90 | XIE Fei, ZHAO Bowei, CUI Ying, et al. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2021, 15(6): 121. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[5] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[6] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[12] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[13] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[14] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[15] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |