Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2475-2485.DOI: 10.16085/j.issn.1000-6613.2022-1273
• Materials science and technology • Previous Articles Next Articles
ZHANG Ning(), WU Haibin, LI Yu, LI Jianfeng(), CHENG Fangqin
Received:
2022-07-06
Revised:
2022-11-24
Online:
2023-06-02
Published:
2023-05-10
Contact:
LI Jianfeng
通讯作者:
李剑锋
作者简介:
张宁(1984—),女,博士研究生,研究方向为水污染控制与资源化。E-mail:276038582@qq.com。
基金资助:
CLC Number:
ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485.
张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1273
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解效率 | 参考 文献 |
---|---|---|---|---|---|
TiO2/硅藻土颗粒 | 煅烧法 | 2mm | 150W 氙灯 可见光滤光片 | 四环素:92%/150min | [ |
g-C3N4/膨胀玻璃珠 | 煅烧法 | 2~4mm | 36W 荧光灯 四组 | 微囊藻毒素-LR:100%/60min 柱状藻毒素:100%/100min | [ |
TiO2-ZnO/轻质膨胀黏土 | 浸渍-焙烧 | 4~8mm | 125W UV-C(398mW/cm2) NH3·H2O:400mg/L | NH3·H2O:95.2%/3h | [ |
TiO2/泡沫玻璃 | 喷涂法 | 1~2mm | 8W UV-A LED 柴油:688mg/L 自然太阳光 亚甲基蓝:20μmol/L | 柴油:60.6%/68h 亚甲基蓝:56.4%/6h | [ |
BiOI/SiO2微球 | 浸渍-水热法 | 1.2μm | 300W 氙灯(λ>400nm) 柴油:1000mg/L 罗丹明B:10mg/L | 柴油:86%/300min 罗丹明B:86.2%/15h(36W LED) | [ |
CeO2/膨胀石墨 | 浸渍-焙烧法 | 片状石墨(80目)为基材 | 300W 氙灯(λ>400nm) 苯酚:10mg/L | 苯酚:吸附率38.8%/30min 降解率97.3%/2h | [ |
聚二甲基二烯丙基氯化铵- g-C3N4-膨胀石墨 | 浸渍改性 | 400~500μm | 500W 氙灯(λ>420nm) | 微囊藻毒素-LR:100%/2h | [ |
Ag/g-C3N4/还原氧化石墨烯 气凝胶 | 水热法 | 块状 | 300W 氙灯(λ>420nm) 罗丹明6G:10mg/L | 罗丹明6G:降解率93%/4h 矿化率70.5%/4h | [ |
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解效率 | 参考 文献 |
---|---|---|---|---|---|
TiO2/硅藻土颗粒 | 煅烧法 | 2mm | 150W 氙灯 可见光滤光片 | 四环素:92%/150min | [ |
g-C3N4/膨胀玻璃珠 | 煅烧法 | 2~4mm | 36W 荧光灯 四组 | 微囊藻毒素-LR:100%/60min 柱状藻毒素:100%/100min | [ |
TiO2-ZnO/轻质膨胀黏土 | 浸渍-焙烧 | 4~8mm | 125W UV-C(398mW/cm2) NH3·H2O:400mg/L | NH3·H2O:95.2%/3h | [ |
TiO2/泡沫玻璃 | 喷涂法 | 1~2mm | 8W UV-A LED 柴油:688mg/L 自然太阳光 亚甲基蓝:20μmol/L | 柴油:60.6%/68h 亚甲基蓝:56.4%/6h | [ |
BiOI/SiO2微球 | 浸渍-水热法 | 1.2μm | 300W 氙灯(λ>400nm) 柴油:1000mg/L 罗丹明B:10mg/L | 柴油:86%/300min 罗丹明B:86.2%/15h(36W LED) | [ |
CeO2/膨胀石墨 | 浸渍-焙烧法 | 片状石墨(80目)为基材 | 300W 氙灯(λ>400nm) 苯酚:10mg/L | 苯酚:吸附率38.8%/30min 降解率97.3%/2h | [ |
聚二甲基二烯丙基氯化铵- g-C3N4-膨胀石墨 | 浸渍改性 | 400~500μm | 500W 氙灯(λ>420nm) | 微囊藻毒素-LR:100%/2h | [ |
Ag/g-C3N4/还原氧化石墨烯 气凝胶 | 水热法 | 块状 | 300W 氙灯(λ>420nm) 罗丹明6G:10mg/L | 罗丹明6G:降解率93%/4h 矿化率70.5%/4h | [ |
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解率 | 参考 文献 |
---|---|---|---|---|---|
还原氧化石墨烯/BiOBr/丝瓜海绵 | 水热法 | d=5.5cm 圆柱状 | 300W氙灯 (80mW/cm2) (λ>420nm) | 铜绿微囊藻:90%/3h 总有机碳(TOC):74% | [ |
表面改性-TiO2/棕榈树干 | 浸渍法 | 块状 | 自然阳光 刚果红:10mg/L 苯酚:10mg/L 4-硝基苯酚:10mg/L 2.4-二硝基苯酚:10mg/L 甲苯胺:10mg/L | 刚果红:98.2%/210min 苯酚:58.4%/210min 4-硝基苯酚:83.0%/210min 2.4-二硝基苯酚:70.7%/210min 甲苯胺:61.6%/210min | [ |
Fe0/低密度聚乙烯 | 低温热附着法 | 4mm 0.9~2.0g/cm3 | 85W商用荧光灯 丽春红4R:50~150mg/L | 丽春红4R:100%/15min (50mg/L时) | [ |
Ag/AgCl@ZIF-8/改性聚氨酯海绵 | 涂层法 | 4.5cm×4.5cm×0.5cm | 500W卤灯 (λ>420nm) | 铜绿微囊藻:98.5%/4h | [ |
ZnO-C3N4/聚对苯二甲酸乙二醇酯 | 超声浸渍法 | — | 150W卤钨灯 苯:8400mg/L | 苯:99.7%/1.5h | [ |
聚醚酰亚胺/g-C3N4 | 黏结法 | 块状 | 11W近自然光 甲基橙:4mg/L | 甲基橙:80%/68h | [ |
聚二甲基硅氧烷/聚多巴胺/普鲁士蓝 | 模板法 | 2~3mm | 70mW/cm2 亚甲基蓝:5mg/L | 亚甲基蓝:/1.5~2h | [ |
介孔黑色 TiO2泡沫 | 冷冻干燥-筑造成型-表面氢化 | d=1.0cm h=0.2~0.3cm | 300W 氙灯 100mW/cm2 催化剂:2.5g/L 污染物:1mg/L | 十六烷:99%/15h(TOC) 罗丹明B:100%/3h(TOC) | [ |
Ag2O/g-C3N4水凝胶 | 原位合成法 | 31.86g 5cm | 500W钨灯 4.78×106个细胞/mL 催化剂:1g/L | 铜绿微囊藻:98.6%/5h | [ |
g-C3N4-纳米纤维素 | 溶剂浇铸法 | h=0.3mm (40±3)kg/m3 | LED 罗丹明B:5mg/L | 95%/6h | [ |
生物质-TiO2-气凝胶 | 凝胶法-浇筑法 | 丸状 棒状 | 300W 氙灯(50W/m2) 可见光(>420nm) Cr6+:10μg/g | Cr6+:100%/90min | [ |
TiO2-有机硅复合气凝胶 | 原位缩聚法 | d=4cm h=0.3cm | 4W/40W/250W 紫外灯 (300nm<λ<380nm) 罗丹明B:20mg/L 双酚A:20mg/L | 罗丹明B 4W:100%/11h 40W:100%/5h 250W:100%/150min 双酚A 4W:TOC,87%/25h | [ |
TiO2-NaOB/海藻酸钙 | 离子凝胶法 | 3.0~4.9mm | 10组3W UV LED 柠檬黄:50mg/L 亚甲基蓝:50mg/L | 柠檬黄:降解率95%/3h 矿化率34.4%/3h 亚甲基蓝:降解率99%/3h 矿化率53.6%/3h | [ |
聚砜/海藻酸盐/TiO2 | 相转变 | 1~6mm | 15WUV 亚甲基蓝:3.2mg/L 双氯芬酸:20mg/L 三氯生20mg/L | 100%/50min 100%/40min 100%/120min | [ |
载体 | 制备方法 | 参数 (长度/粒径/密度) | 反应条件 (光源/污染物浓度) | 降解率 | 参考 文献 |
---|---|---|---|---|---|
还原氧化石墨烯/BiOBr/丝瓜海绵 | 水热法 | d=5.5cm 圆柱状 | 300W氙灯 (80mW/cm2) (λ>420nm) | 铜绿微囊藻:90%/3h 总有机碳(TOC):74% | [ |
表面改性-TiO2/棕榈树干 | 浸渍法 | 块状 | 自然阳光 刚果红:10mg/L 苯酚:10mg/L 4-硝基苯酚:10mg/L 2.4-二硝基苯酚:10mg/L 甲苯胺:10mg/L | 刚果红:98.2%/210min 苯酚:58.4%/210min 4-硝基苯酚:83.0%/210min 2.4-二硝基苯酚:70.7%/210min 甲苯胺:61.6%/210min | [ |
Fe0/低密度聚乙烯 | 低温热附着法 | 4mm 0.9~2.0g/cm3 | 85W商用荧光灯 丽春红4R:50~150mg/L | 丽春红4R:100%/15min (50mg/L时) | [ |
Ag/AgCl@ZIF-8/改性聚氨酯海绵 | 涂层法 | 4.5cm×4.5cm×0.5cm | 500W卤灯 (λ>420nm) | 铜绿微囊藻:98.5%/4h | [ |
ZnO-C3N4/聚对苯二甲酸乙二醇酯 | 超声浸渍法 | — | 150W卤钨灯 苯:8400mg/L | 苯:99.7%/1.5h | [ |
聚醚酰亚胺/g-C3N4 | 黏结法 | 块状 | 11W近自然光 甲基橙:4mg/L | 甲基橙:80%/68h | [ |
聚二甲基硅氧烷/聚多巴胺/普鲁士蓝 | 模板法 | 2~3mm | 70mW/cm2 亚甲基蓝:5mg/L | 亚甲基蓝:/1.5~2h | [ |
介孔黑色 TiO2泡沫 | 冷冻干燥-筑造成型-表面氢化 | d=1.0cm h=0.2~0.3cm | 300W 氙灯 100mW/cm2 催化剂:2.5g/L 污染物:1mg/L | 十六烷:99%/15h(TOC) 罗丹明B:100%/3h(TOC) | [ |
Ag2O/g-C3N4水凝胶 | 原位合成法 | 31.86g 5cm | 500W钨灯 4.78×106个细胞/mL 催化剂:1g/L | 铜绿微囊藻:98.6%/5h | [ |
g-C3N4-纳米纤维素 | 溶剂浇铸法 | h=0.3mm (40±3)kg/m3 | LED 罗丹明B:5mg/L | 95%/6h | [ |
生物质-TiO2-气凝胶 | 凝胶法-浇筑法 | 丸状 棒状 | 300W 氙灯(50W/m2) 可见光(>420nm) Cr6+:10μg/g | Cr6+:100%/90min | [ |
TiO2-有机硅复合气凝胶 | 原位缩聚法 | d=4cm h=0.3cm | 4W/40W/250W 紫外灯 (300nm<λ<380nm) 罗丹明B:20mg/L 双酚A:20mg/L | 罗丹明B 4W:100%/11h 40W:100%/5h 250W:100%/150min 双酚A 4W:TOC,87%/25h | [ |
TiO2-NaOB/海藻酸钙 | 离子凝胶法 | 3.0~4.9mm | 10组3W UV LED 柠檬黄:50mg/L 亚甲基蓝:50mg/L | 柠檬黄:降解率95%/3h 矿化率34.4%/3h 亚甲基蓝:降解率99%/3h 矿化率53.6%/3h | [ |
聚砜/海藻酸盐/TiO2 | 相转变 | 1~6mm | 15WUV 亚甲基蓝:3.2mg/L 双氯芬酸:20mg/L 三氯生20mg/L | 100%/50min 100%/40min 100%/120min | [ |
制备方法 | 优点 | 缺点 |
---|---|---|
表面涂层法 | 适用基材范围广,方法简便易操作,无需昂贵的实验室设备 | 制备时间长,易造成催化剂浪费,质量难控 |
溶胶凝胶法 | 沉积催化剂的纯度、均匀性、较低的温度、材料的形貌(形状、分布、尺寸)易控、可多层涂层,易在大的表面上获得涂层均匀的多组分氧化物膜,无需复杂设备 | 后期需煅烧适合耐高温基材,制备时间长,溶剂多有毒性,实验室研究,若用于放大生产尚需进一步研究 |
喷雾热解法 | 经济有效,沉积层均匀、精细,制备的材料比表面积高,活性强,无需昂贵仪器设备和试剂 | 易从基材上脱落、浸出和溶解 |
溶剂浇铸法 | 成本合理,反应可控,制备时间短 | 光催化剂活性降低 |
制备方法 | 优点 | 缺点 |
---|---|---|
表面涂层法 | 适用基材范围广,方法简便易操作,无需昂贵的实验室设备 | 制备时间长,易造成催化剂浪费,质量难控 |
溶胶凝胶法 | 沉积催化剂的纯度、均匀性、较低的温度、材料的形貌(形状、分布、尺寸)易控、可多层涂层,易在大的表面上获得涂层均匀的多组分氧化物膜,无需复杂设备 | 后期需煅烧适合耐高温基材,制备时间长,溶剂多有毒性,实验室研究,若用于放大生产尚需进一步研究 |
喷雾热解法 | 经济有效,沉积层均匀、精细,制备的材料比表面积高,活性强,无需昂贵仪器设备和试剂 | 易从基材上脱落、浸出和溶解 |
溶剂浇铸法 | 成本合理,反应可控,制备时间短 | 光催化剂活性降低 |
1 | 路建美. 微纳功能材料在环境治理中的应用[J]. 化工进展, 2020, 39(6): 2049-2065. |
LU Jianmei. Application of micro-nano functional materials in environmental governance[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2049-2065. | |
2 | DU P, CARNEIRO J T, MOULIJN J A, et al. A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis[J]. Applied Catalysis A: General, 2008, 334: 119-128. |
3 | SHAN A Y, MOHDGHAZI T I, RASHID S A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review[J]. Applied Catalysis A: General, 2010, 389(1/2): 1-8. |
4 | CHEN Yan, WU Qiong, LIU Li, et al. The fabrication of self-floating Ti3+/N co-doped TiO2/diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation[J]. Applied Surface Science, 2019, 467/468: 514-525. |
5 | MATTEWS R W. Photooxidation of organic impurities in water using thin films of titanium dioxide[J]. The Journal of Physical Chemistry, 1987, 91: 3328-3333. |
6 | WANG Xin, WANG Xuejiang, ZHAO Jianfu, et al. An alternative to in situ photocatalytic degradation of microcystin-LR by worm-like N, P co-doped TiO2/expanded graphite by carbon layer (NPT-EGC) floating composites[J]. Applied Catalysis B: Environmental, 2017, 206: 479-489. |
7 | KHAN U A, LIU J J, PAN J B, et al. Fabrication of flower-shaped hierarchical rGO QDs-Bi-Bi2WO6/EP floating photocatalyst: Eminent degradation kinetic under sun-like irradiation[J]. Applied Surface Science, 2019, 484: 341-353. |
8 | QIU Hongxuan, HU Jiwen, ZHANG Run, et al. The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123996. |
9 | WANG Xin, WANG Xuejiang, ZHAO Jianfu, et al. Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2 /expanded perlite floating composites[J]. Chemical Engineering Journal, 2017, 320: 253-263. |
10 | Maciej ŁUGOSZ, Paweł ŻMUDZKI, Anna KWIECIEŃ, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst[J]. Journal of Hazardous Materials, 2015, 298: 146-153. |
11 | XUE Hongbo, JIANG Yauchen, YUAN Kechun, et al. Floating photocatalyst of B-N-TiO2/expanded perlite: A sol-gel synthesis with optimized mesoporous and high photocatalytic activity[J]. Scientific Reports, 2016, 6:29902. |
12 | VAIANO Vincenzo, MATARANGOLO Matarangolo, SACCO Olga. UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets[J]. Chemical Engineering Journal, 2018, 350: 703-713. |
13 | HUI J, PESTANA C J, CAUX M, et al. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2021, 405: 112935. |
14 | XING Zipeng, ZHANG Jiaqi, CUI Jiayi, et al. Recent advances in floating TiO2-based photocatalysts for environmental application[J]. Applied Catalysis B: Environmental, 2018, 225:424-467. |
15 | KALHORI E M, YETILMEZSOY K, UYGUR N, et al. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)[J]. Applied Surface Science, 2013, 287: 428-442. |
16 | SEPEHR M N, KAZEMIAN H, GHAHRAMANI E, et al. Defluoridation of water via light weight expanded clay aggregate (LECA): Adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1821-1834. |
17 | MOHAMMADI Zahra, SHARIFNIA Shahram, SHAVISI Yaser. Photocatalytic degradation of aqueous ammonia by using TiO2 ZnO/LECA hybrid photocatalyst[J]. Materials Chemistry and Physics, 2016, 184: 110-117. |
18 | PRONINA N N, KLAUSON D, MOISEEV A, et al. Titanium dioxide sol gel-coated expanded clay granules for use in photocatalytic fluidized-bed reactor[J]. Applied Catalysis B: Environmental, 2015, 178: 117-123. |
19 | Adrián ANGULO-IBÁÑEZ, ARANZABE Estíbaliz, BEOBIDE Garikoitz, et al. Slot-die process of a sol-gel photocatalytic porous coating for large-area fabrication of functional architectural glass[J]. Catalysts, 2021, 11: 711. |
20 | BOUSMAHA M, BEZZERROUK M A, KHARROUBI B, et al. Enhanced photocatalysis by depositing ZnO thin film in the inner wall of glass tube[J]. Optik, 2019, 183: 727-731. |
21 | JIANG W J, JOENS J A, DIONYSIOU D D, et al. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262: 7-13. |
22 | AN Yu, ZHENG Pengwu, MA Xiaofei. Preparation and visible-light photocatalytic properties of the floating hollow glass microspheres TiO2/Ag3PO4 composites[J]. RSC Advances, 2019, 9: 721-729. |
23 | PESTANA C J, NORONHA J P, HUI J, et al. Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO2 coated porous glass beads with UV-LED irradiation[J]. Science of the Total Environment, 2020, 745, 141154. |
24 | SCHNABEL T, JAUTZUS N, MEHLING S, et al. Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water[J]. Journal of Water Reuse and Desalination, 2021, 11 (2): 224-235. |
25 | Hana BÍBOVÁ, Lenka HYKRDOVÁ, HOANG Hiep, et al. SiO2/TiO2 composite coating on light substrates for photocatalytic decontamination of water[J]. Journal of Chemistry, 2019(2): 2634398. |
26 | ZHAI Chenxi, ZHONG Ying, LI Zhihong, et al. Preparation and characterization of mechanical properties of foam glass for artificial floating island carrier[J]. Advances in Mechanical Engineering, 2015, 7(6): 1-6. |
27 | PORLEY Victoria, ROBERTSON Neil. Nanostructured photocatalysts: Substrate and support materials for photocatalysis[M]. London: Elsevier, 2020: 129-171. |
28 | QIU Hongxuan, ZHANG Run, YU Yichang, et al. BiOI-on-SiO2 microspheres: A floating photocatalyst for degradation of diesel oil and dye wastewater[J]. The Science of the total environment, 2019, 706: 136043. |
29 | ZHANG Jing, WANG Xuejiang, WANG Xin, et al. Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel[J]. RSC Advances, 2015, 5: 71922-71931. |
30 | LI Huilin, GUO Qiang, LI Yongli, et al. Facile in-situ synthesis of floating CeO2@ expanded graphite composites with efficient adsorption and visible light photocatalytic degradation of phenol[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106252. |
31 | WANG Yarui, CHEN Fengjie, YU Wanchao, et al. An efficient floating adsorption-photocatalyst to decarboxylate D-Glu and D-MeAsp of microcystin-LR via holes direct oxidation[J]. Chemical Engineering Journal, 2021, 413: 127543. |
32 | LIU Houmei, QIU Hongdeng. Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review[J]. Chemical Engineering Journal, 2020, 393: 124691. |
33 | SONG Y S, PENG Y S, LONG N V, et al. Multifunctional self-assembly 3D Ag/g-C3N4/RGO aerogel as highly efficient adsorbent and photocatalyst for R6G removal from wastewater[J]. Applied Surface Science, 2021, 542: 148584. |
34 | TU Xinman, KE Shuhong, LUO Shaohua, et al. Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient microcystis aeruginosa inactivation[J]. Separation and Purification Technology, 2021, 275: 119226. |
35 | SBOUI M, NSIB M F, RAYES A, et al. Application of solar light for photocatalytic degradation of Congo red by a floating salicylic acid-modified TiO2/palm trunk photocatalyst[J]. Comptes Rendus Chimie, 2017, 20(2): 181-189. |
36 | SBOUI M, NSIB M F, RAYES A, et al. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation[J]. Journal of environmental sciences, 2017, 60: 3-13. |
37 | GAO Likun, LU Yun, ZHAN Xianxu, et al. A robust, anti-acid, and high-temperature-humidity-resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane[J]. Surface and Coatings Technology, 2015, 262: 33-39. |
38 | GAO Likun, GAN Wentao, XIAO Shaoliang, et al. A robust superhydrophobic antibacterial Ag-TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016, 42(2): 2170-2179. |
39 | MOHAMAD I N H, RAJAKUMAR J, CHEONG K Y, et al. Titanium dioxide/polyvinyl alcohol/cork nanocomposite: A floating photocatalyst for the degradation of methylene blue under irradiation of a visible light source[J]. ACS Omega, 2021, 6: 14493 -14503. |
40 | MAGALHÃES F, LAGO R M. Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes[J]. Solar Energy, 2009, 83(9): 1521-1526. |
41 | MARTÍN DE V M J, NIETO-MÁRQUEZ A, MORCUENDE D, et al. 3D printed floating photocatalysts for wastewater treatment[J]. Catalysis Today, 2019, 328: 157-163. |
42 | MAGALHÃES F, MOURA F C C, LAGO R M. TiO2/LDPE composites: A new floating photocatalyst for solar degradation of organic contaminants[J]. Desalination, 2011, 276(1/2/3): 266-271. |
43 | Jorge VELÁSQUEZ, VALENCIA Sergio, RIOS Luis, et al. Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlled-temperature embedding method[J]. Chemical Engineering Journal, 2012, 203: 398-405. |
44 | MOSSMANN A, DOTTO G L, HOTZA D, et al. Preparation of polyethylene-supported zero-valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo-Fenton process[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102963. |
45 | FAN Gongduan, ZHANG Junkai, ZHAN Jiajun, et al. Recyclable self-floating A-GUN-coated foam as effective visible-light-driven photocatalyst for inactivation of Microcystis aeruginosa [J]. Journal of Hazardous Materials, 2021, 419: 126407. |
46 | FAN Gongduan, YOU Yi, WANG Bo, et al. Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: Efficiency and its mechanisms[J]. Applied Catalysis B: Environmental, 2019, 256: 117866. |
47 | JOODI Aysan, ALLAHYARI Somaiyeh, RAHEMI Nader, et al. ZnO-C3N4 solar light -driven nanophotocatalysts on floating recycled PET bottle as support for degradation of oil spill[J]. Ceramics International, 2020, 46(8): 11328-11339. |
48 | CÁMARA R M, PORTELA R, GUTIÉRREZ-MARTÍN F, et al. Photocatalytic activity of TiO2 films prepared by surfactant-mediated sol-gel methods over commercial polymer substrates[J]. Chemical Engineering Journal, 2016, 283: 535-543. |
49 | GUO Yong, WANG Ruxia, WANG Peifang, et al. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation[J]. Chemosphere, 2017, 179: 84-91. |
50 | PARK Eunhee, Jaehyun HUR. Three-dimensionally interconnected porous PDMS decorated with poly(dopamine) and Prussian blue for floatable, flexible, and recyclable photo-Fenton catalyst activated by solar light[J]. Applied Surface Science, 2021, 545: 148990. |
51 | ZHANG Kaifu, ZHOU Wei, ZHANG Xiangcheng, et al. Self-floating amphiphilic black TiO2 foams with 3D macro-mesoporous architectures as efficient solar-driven photocatalysts[J]. Applied Catalysis B: Environmental, 2017, 206: 336-343. |
52 | FAN Gongduan, DU Banghao, ZHOU Jinjin, et al. Porous self-floating 3D Ag2O/g-C3N4 hydrogel and photocatalytic inactivation of Microcystis aeruginosa under visible light[J]. Chemical Engineering Journal, 2021, 404: 126509. |
53 | DJELLABI Ridha, ZHANG Laiqi, YANG Bo, et al. Sustainable self-floating lignocellulosic biomass-TiO2@Aerogel for outdoor solar photocatalytic Cr( Ⅵ ) reduction[J]. Separation and Purification Technology, 2019, 229: 115830. |
54 | ZHANG Lixin, RAO Lei, WANG Peifang, et al. Superhydrophobic self-floating TiO2-silicone composite aerogels and their air-liquid-solid triphase photocatalytic system[J]. Applied Surface Science, 2021, 536: 147726. |
55 | ZHOU Xuejiao, SHAO Changlu, YANG Shu, et al. Heterojunction of g-C3N4/BiOI immobilized on flexible electrospun polyacrylonitrile nanofibers: Facile preparation and enhanced visible photocatalytic activity for floating photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 2316-2323. |
56 | DALLABONA I D, MATHIAS Á L, JORGE R M M. A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127159. |
57 | HUANG X H, HU T, BU H, et al. Transparent floatable magnetic alginate sphere used as photocatalysts carrier for improving photocatalytic efficiency and recycling convenience[J]. Carbohydrate polymers, 2021, 254: 117281. |
58 | MEHMOOD C T, ZHONG Z, ZHOU H, et al. Constructing porous beads with modified polysulfone-alginate and TiO2 as a robust and recyclable photocatalyst for wastewater treatment[J]. Journal of Water Process Engineering, 2020, 38: 101601. |
59 | ANUSUYADEVI P R, RIAZANOVA A V, HEDENQVIST M S, et al. Floating photocatalysts for effluent refinement based on stable pickering cellulose foams and graphitic carbon nitride (g-C3N4)[J]. ACS Omega, 2020, 5: 22411-22419. |
60 | 张进. 一种漂浮型粉煤灰漂珠负载Pt-BiVO4材料的制备及性能[J]. 化工新型材料, 2014, 42(11): 73-78. |
ZHANG Jin. Preparation and characterization of a floating composite: Pt-BiVO4/fly ash cenospheres[J]. New Chemical materials, 2014, 42(11): 73-78. | |
61 | SONG Jingke, WANG Xuejiang, BU Yunjie, et al. Preparation, characterization, and photocatalytic activity evaluation of Fe-N-codoped TiO2/fly ash cenospheres floating photocatalyst[J]. Environmental Science and Pollution Research, 2016, 23: 22793-22802. |
62 | HUO Pengwei, YAN Yongsheng, LI Songtian, et al. Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity[J]. Desalination, 2010, 256(1/2/3): 196-200. |
63 | DE ANDRADE F V, DE LIMA G M, AUGUSTI R, et al. A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants[J]. Journal of Water Process Engineering, 2015, 7: 27-35. |
64 | Hossein AZIZI-TOUPKANLOO, Mahdi KARIMI-NAZARABAD, Amini GHOLAM-REZA, et al. Immobilization of AgCl@TiO2 on the woven wire mesh: Sunlight-responsive environmental photocatalyst with high durability[J]. Solar Energy, 2020, 196: 653-662. |
65 | NASIR A M, JAAFAR J, AZIZ F, et al. A review on floating nanocomposite photocatalyst: Fabrication and applications for wastewater treatment[J]. Journal of Water Process Engineering, 2020, 36: 101300. |
66 | SRIKANTH B, GOUTHAM R, BADRI NARAYAN R, et al. Recent advancements in supporting materials for immobilised photocatalytic applications in wastewater treatment[J]. Journal of Environmental Management, 2017, 200: 60-78. |
67 | SIYASUKH Adisak, CHIMUPALA Yothin, TONANON Nattaporn. Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity[J]. Carbon, 2018, 134: 207-221. |
68 | RAMÍREZ-DEL-SOLAR M, BLANCO E. Submicron porous materials: Porous thin films from sol-gel[M]. Switzerland: Springer, Cham, 2017: 157-188. |
69 | SOLTANI R D C, REZAEE A, SAFARI M, et al. Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates[J]. Desalination and Water Treatment, 2015, 53: 1613-1620. |
70 | VERA M L, LEYVA G, LITTER M I. Simple TiO2 coatings by sol-gel techniques combined with commercial TiO2 particles for use in heterogeneous photocatalysis[J]. Journal of Nanoscience and Nanotechnology, 2017, 17: 4946-4954. |
71 | WANG Xuejiang, WANG Jiayi, ZHANG Jing, et al. Synthesis of expanded graphite C/C composites(EGC) based Ni-N-TiO2 floating photocatalysts for in situ adsorption synergistic photocatalytic degradation of diesel oil[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347: 105-115. |
72 | MAKI Yusuke, Yusuke IDE, OKADA Tomohiko. Water-floatable organosilica particles for TiO2 photocatalysis[J]. Chemical Engineering Journal, 2016, 299: 367-372. |
73 | NAIR A K, GEORGE D R, BABY N J, et al. Solar dye degradation using TiO2 nanosheet based nanocomposite floating photocatalyst[J]. Materials Today: Proceedings, 2021, 46: 2747-2751. |
74 | TANG Jialin, WANG Jiajia, TANG Lin, et al. Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation[J]. Chemical Engineering Journal, 2022, 430(Part 1): 132669. |
75 | TONG Zhenwei, YANG Dong, SHI Jiafu, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2015, 7, 46: 25693-25701. |
76 | URBONAVICIUS M, VARNAGIRIS S, SAKALAUSKAITE S, et al. Application of floating TiO2 photocatalyst for methylene blue decomposition and salmonella typhimurium inactivation[J]. Catalysts, 2021, 11(7): 794. |
77 | DJELLABI Ridha, YANG Bo, XIAO Ke, et al. Unravelling the mechanistic role of Ti-O-C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light[J]. Journal of Colloid and Interface Science, 2019, 553: 409-417. |
78 | ZHANG Linlin, XING Zipeng, ZHANG Hang, et al. Multifunctional floating titania-coated macro/mesoporous photocatalyst for efficient contaminant removal[J]. ChemPlusChem, 2015, 80(3): 623-629. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[4] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[5] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[6] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[7] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[8] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[9] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[10] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[11] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[12] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[13] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[14] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |