Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2390-2401.DOI: 10.16085/j.issn.1000-6613.2022-1307
• Industrial catalysis • Previous Articles Next Articles
YUE Xin(), LI Chunying, SUN Dao’an(), LI Jiangwei, DU Yongmei, MA Hui, LYU Jian()
Received:
2022-07-12
Revised:
2022-12-01
Online:
2023-06-02
Published:
2023-05-10
Contact:
SUN Dao’an, LYU Jian
岳鑫(), 李春迎, 孙道安(), 李江伟, 杜咏梅, 马辉, 吕剑()
通讯作者:
孙道安,吕剑
作者简介:
岳鑫(1999—),男,硕士研究生,研究方向为应用化学。E-mail:yuexin233@pku.edu.cn。
基金资助:
CLC Number:
YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401.
岳鑫, 李春迎, 孙道安, 李江伟, 杜咏梅, 马辉, 吕剑. 重氮化合物环丙烷化用多相催化剂研究进展[J]. 化工进展, 2023, 42(5): 2390-2401.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1307
1 | 董慧. 环丙烷化高能量密度燃料合成研究[D]. 北京: 北京化工大学, 2021. |
DONG Hui. Synthesis of cyclopropanized high energy density fuel[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
2 | DILL James D, GREENBERG Arthur, LIEBMAN Joel F. Substituent effects on strain energies[J]. Journal of the American Chemical Society, 1979, 101(23): 6814-6826. |
3 | 潘伦, 邓强, 鄂秀天凤, 等. 高密度航空航天燃料合成化学[J]. 化学进展, 2015, 27(11): 1531-1541. |
PAN Lun, DENG Qiang, Xiutianfeng E, et al. Synthesis chemistry of high-density fuels for aviation and aerospace propulsion[J]. Progress in Chemistry, 2015, 27(11): 1531-1541. | |
4 | THULASIRAM H V, ERICKSON H K, POULTER C D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis[J]. Science, 2007, 316(5821): 73-76. |
5 | CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chemical Reviews, 2017, 117(17): 11570-11648. |
6 | ANDRES Nikolaus, WOLF Heinz, Hans ZÄHNER, et al. Stoffwechselprodukte von mikroorganismen. 253. mitteilung. hormaomycin, ein neues peptid-lacton mit morphogener aktivität auf streptomyceten[J]. Helvetica Chimica Acta, 1989, 72(3): 426-437. |
7 | TROTTMANN F, FRANKE J, RICHTER I, et al. Cyclopropanol warhead in malleicyprol confers virulence of human- and animal-pathogenic burkholderia species[J]. Angewandte Chemie International Edition, 2019, 58(40): 14129-14133. |
8 | CAPITANI Guido, HOHENESTER Erhard, FENG Liang, et al. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene [J]. Journal of Molecular Biology, 1999, 294(3): 745-756. |
9 | DENMARK Scott E, CHRISTENSON Beritte L, Diane M COE, et al. Catalytic enantioselective cyclopropanation with bis(halomethyl)zinc reagents. Ⅰ. Optimization of reaction protocol[J]. Tetrahedron Letters, 1995, 36(13): 2215-2218. |
10 | DEMSELBEN. Ueber die zersetzung des chloroforms durch alkoholische kalilösung[J]. Justus Liekigs Annalen Der Chemie, 1862, 123(1): 121-122. |
11 | BEDEKAR Ashutosh V, ANDERSSON Pher G. A new class of bis-oxazoline ligands for the Cu-catalysed asymmetric cyclopropanation of olefins[J]. Tetrahedron Letters, 1996, 37(23): 4073-4076. |
12 | ARLT D, JAUTELAT M, LANTZSCH R. ChemInform abstract: syntheses of pyrethroid acids[J]. Chemischer Informationsdienst, 1981, 12(51): 703-722. |
13 | CHEN Ying, ZHANG X Peter. Vitamin B12 derivatives as natural asymmetric catalysts: enantioselective cyclopropanation of alkenes[J]. The Journal of Organic Chemistry, 2004, 69(7): 2431-2435. |
14 | 孙越. 铁(Ⅲ)催化二氟乙醛N-磺酰腙(DFHZ)与烯烃的环丙烷化反应研究[D]. 长春: 东北师范大学, 2020. |
SUN Yue. Study on cyclopropane reaction of difluoroacetaldehyde N-sulfonylhydrazone (DFHZ) with olefins catalyzed by iron ( Ⅲ )[D]. Changchun: Northeast Normal University, 2020. | |
15 | 刘纪娜. 金属卟啉催化芳香烯烃的环丙烷化反应与机理研究[D]. 长沙: 湖南大学, 2015. |
LIU Jina. Study on cyclopropanation and mechanism of olefins catalyzed by metalloporphyrins[D]. Changsha: Hunan University, 2015. | |
16 | 边庆花, 乔振, 侯士聪, 等. 环丙烷化反应中催化剂固载化的研究进展[J]. 有机化学, 2004, 24(7): 831-841, 712. |
BIAN Qinghua, QIAO Zhen, HOU Shicong, et al. Advances of immobilization of catalysts for cyclopropanation[J]. Chinese Journal of Organic Chemistry, 2004, 24(7): 831-841, 712. | |
17 | HANTZSCH A, SILBERRAD O. Ueber die polymerisationsproducte aus diazoessigester[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1900, 33(1): 58-89. |
18 | HENNE Albert L, TURK Amos. Conjugated diolefins by double bond displacement[J]. Journal of the American Chemical Society, 1942, 64(4): 826-828. |
19 | WENKERT Ernest, GUO Ming, PIZZO Ferdinando, et al. Synthesis of 2-cycloalkenones (parts of 1,4-diacyl-1,3-butadiene systems) and of a heterocyclic analogue by metal-catalyzed decomposition of 2-diazoacylfurans[J]. Helvetica Chimica Acta, 1987, 70(5): 1429-1438. |
20 | CHEN Longrui, BOVEE Mark O, LEMMA Betsegaw E, et al. An inexpensive and recyclable silver-foil catalyst for the cyclopropanation of alkenes with diazoacetates under mechanochemical conditions[J]. Angewandte Chemie International Edition, 2015, 54(38): 11084-11087. |
21 | CHEN Longrui, LESLIE Devonna, COLEMAN Michael G, et al. Recyclable heterogeneous metal foil-catalyzed cyclopropenation of alkynes and diazoacetates under solvent-free mechanochemical reaction conditions[J]. Chemical Science, 2018, 9(20): 4650-4661. |
22 | FRAILE J M, GARCÍA B, GARCÍA J I, et al. The use of heterogeneous copper catalysts in cyclopropanation reactions[J]. Studies in Surface Science and Catalysis, 1997, 108: 571-578. |
23 | LIU Xiang, LIU Yan, LI Xiaohong, et al. Cyclopropanation on a highly active heterogeneous catalyst: CuO/TiO2-Al2O3 [J]. Applied Catalysis A: General, 2003, 239(1/2): 279-286. |
24 | LAKSHMI KANTAM M, SWARNA JAYA V, JAYA LAKSHMI M, et al. Alumina supported copper nanoparticles for aziridination and cyclopropanation reactions[J]. Catalysis Communications, 2007, 8(12): 1963-1968. |
25 | ISHIKAWA Shingo, HUDSON Reuben, MASNADI Mitra, et al.Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles[J]. Tetrahedron, 2014, 70(36): 6162-6168. |
26 | SARKAR Abhijnan, FORMENTI Dario, FERRETTI Francesco, et al. Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins[J]. Chemical Science, 2020, 11(24): 6217-6221. |
27 | FELDMAN Robert A, FRAILE José M. Electrostatic immobilization of bis(oxazoline)-copper complexes on mesoporous crystalline materials: Cation exchange vs. incipient wetness methods[J]. Applied Catalysis A: General, 2014, 485: 67-73. |
28 | MANDOLI Alessandro, ORLANDI Simonetta, PINI Dario, et al. A reusable, insoluble polymer-bound bis(oxazoline)(IPB-box) for highly enantioselective heterogeneous cyclopropanation reactions[J]. Chemical Communications, 2003(19): 2466-2467. |
29 | MANDOLI Alessandro, ORLANDI Simonetta, PINI Dario, et al. Insoluble polystyrene-bound bis(oxazoline): Batch and continuous-flow heterogeneous enantioselective glyoxylate-ene reaction[J]. Tetrahedron: Asymmetry, 2004, 15(20): 3233-3244. |
30 | Isabel BURGUETE M, FRAILE José M, GARCÍA José I, et al. Bis(oxazoline)copper complexes covalently bonded to insoluble support as catalysts in cyclopropanation reactions[J]. The Journal of Organic Chemistry, 2001, 66(26): 8893-8901. |
31 | BURGUETE M I, FRAILE J M, GARCÍA-VERDUGO E, et al. Polymer-supported bis(oxazolines) and related systems: Toward new heterogeneous enantioselective catalysts[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8580-8587. |
32 | WERNER Heiko, HERRERÍAS Clara I, GLOS Michael, et al. Synthesis of polymer bound azabis(oxazoline) ligands and their application in asymmetric cyclopropanations[J]. Advanced Synthesis & Catalysis, 2006, 348(1/2): 125-132. |
33 | MOTOYAMA Y, NISHIKATA T, NAGASHIMA H. A chiral bis(oxazoline) ligand embedded into polysiloxane gel: Application to a reusable copper catalyst for asymmetric cyclopropanation[J]. Chemistry-An Asian Journal, 2011, 6(1): 78-82. |
34 | FRAILE José M, GARCı́A José I, MAYORAL José A, et al. Clay-supported bis(oxazoline)-copper complexes as heterogeneous catalysts of enantioselective cyclopropanation reactions[J]. Tetrahedron: Asymmetry, 1998, 9(22): 3997-4008. |
35 | FERNÁNDEZ M J, FRAILE J M, GARCÍA J I, et al. Enantioselective cyclopropanation reactions promoted by immobilized bis(oxazoline)-copper complexes[J]. Topics in Catalysis, 2000, 13(3): 303-309. |
36 | Rosario TORVISO M, MANSILLA Daniela S, FRAILE José M, et al. The importance of copper placement in chiral catalysts supported on heteropolyanions: Lacunary vs external exchanged[J]. Molecular Catalysis, 2020, 489: 110935. |
37 | FRAILE José M, GARCÍA José I, MAYORAL José A, et al. Bis(oxazoline)-copper complexes, supported by electrostatic interactions, as heterogeneous catalysts for enantioselective cyclopropanation reactions: Influence of the anionic support[J]. Journal of Catalysis, 1999, 186(1): 214-221. |
38 | FELDMAN Robert A, FRAILE José M. Improved methodology for non-covalent immobilization of tert-butyl-azabis(oxazoline)-copper complex on Al-MCM41[J]. Applied Catalysis A: General, 2015, 502: 166-173. |
39 | FAKHFAKH Fatma, BARAKET Leila, GHORBEL Abdelhamid, et al. Catalytic activity of copper-bis(oxazoline) grafted on mesoporous silica in enantioselective cyclopropanation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 119-130. |
40 | FAKHFAKH Fatma, BARAKET Leila, GHORBEL Abdelhamid, et al. Effect of support properties on the performance of silica-supported bis(oxazoline)-copper chiral complexes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 329(1/2): 21-26. |
41 | ALBUQUERQUE Hélio, CARNEIRO Liliana, CARVALHO Ana P, et al. Enantioselective cyclopropanation and aziridination catalyzed by copper(Ⅱ) bis(oxazoline) anchored onto mesoporous materials[J]. Polyhedron, 2014, 79: 315-323. |
42 | SILVA Ana Rosa, ALBUQUERQUE Hélio, BORGES Susana, et al. Strategies for copper bis(oxazoline) immobilization onto porous silica based materials[J]. Microporous and Mesoporous Materials, 2012, 158: 26-38. |
43 | SILVA Ana Rosa, ALBUQUERQUE Hélio, FONTES André, et al. Copper bis(oxazoline) encapsulated in zeolites and its application as heterogeneous catalysts for the cyclopropanation of styrene[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11495-11501. |
44 | 张永忠, 钟江春, 边庆花, 等. 离子液体支载的催化剂在不对称合成反应中循环使用的研究进展[J]. 有机化学, 2006, 26(10): 1362-1369. |
ZHANG Yongzhong, ZHONG Jiangchun, BIAN Qinghua, et al. Recycle application of catalyst supported by ionic liquids to asymmetric reaction[J]. Chinese Journal of Organic Chemistry, 2006, 26(10): 1362-1369. | |
45 | FRAILE José M, GARCÍA José I, HERRERÍAS Clara I, et al. Comparison of the immobilization of chiral bis(oxazoline)-copper complexes onto anionic solids and in ionic liquids[J]. Green Chemistry, 2004, 6(2): 93-98. |
46 | FRAILE José M, GARCı́A José I, HERRERı́AS Clara I, et al. Enantioselective cyclopropanation reactions in ionic liquids[J]. Tetrahedron: Asymmetry, 2001, 12(13): 1891-1894. |
47 | DAVIES David L, KANDOLA Sukhvinder K, PATEL Raj K. Asymmetric cyclopropanation in ionic liquids: Effect of anion and impurities[J]. Tetrahedron: Asymmetry, 2004, 15(1): 77-80. |
48 | GARCÍA José I, Beatriz LÓPEZ-SÁNCHEZ, MAYORAL José A, et al. Surface confinement effects in enantioselective catalysis: Design of new heterogeneous chiral catalysts based on C1-symmetric bisoxazolines and their application in cyclopropanation reactions[J]. Journal of Catalysis, 2008, 258(2): 378-385. |
49 | CORNEJO Alfonso, FRAILE José M, GARCı́A José I, et al. Surface-mediated improvement of enantioselectivity with clay-immobilized copper catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2003, 196(1/2): 101-108. |
50 | 孙伟, 夏春谷, 王爱勤. 壳聚糖希夫碱铜多相催化剂催化苯乙烯环丙烷化反应研究[J]. 化学学报, 2002, 60(1): 162-165, 13. |
SUN Wei, XIA Chungu, WANG Aiqin. Cyclopropanation of styrene catalyzed by chitosan Schiff-base copper (Ⅰ) heterogeneous catalyst [J]. Acta Chimica Sinica, 2002, 60(1):162-165, 13. | |
51 | CABALLERO Ana, SABATER Mariano, Esther MORILLA M, et al. Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions[J]. Inorganica Chimica Acta, 2009, 362(12): 4599-4602. |
52 | SYUKRI Syukri, FISCHER Christian E, HMAIDEEN Akef AL, et al. Modified MCM-41-supported acetonitrile ligated copper(Ⅱ) and its catalytic activity in cyclopropanation of olefins [J]. Microporous and Mesoporous Materials, 2008, 113(1): 171-177. |
53 | SYUKRI Syukri, HIJAZI Ahmed K, SAKTHIVEL Ayyamperumal, et al. Heterogenization of solvent-ligated copper(Ⅱ) complexes on poly(4-vinylpyridine) for the catalytic cyclopropanation of olefins[J]. Inorganica Chimica Acta, 2007, 360(1): 197-202. |
54 | SAKTHIVEL Ayyamperumal, SYUKRI S, HIJAZI Ahmed K, et al. Heterogenization of [Cu(NCCH3)4][BF4]2 on mesoporous AlMCM-41/AlMCM-48 and its application as cyclopropanation catalyst[J]. Catalysis Letters, 2006, 111(1/2): 43-49. |
55 | CASTANO Brunilde, ZARDI Paolo, HÖNEMANN Yvonne C, et al. Silica “SHB” chiral Pc-L* copper complexes for halogen-free solvent cyclopropanation reactions [J]. RSC Advances, 2013, 3(44): 22199-22205. |
56 | 朱新举, 牛俊龙, 赵雪梅, 等. 联苯骨架手性双咪唑啉配体的合成及在不对称环丙烷化中的应用[J]. 有机化学, 2018, 38(1): 118-123. |
ZHU Xinju, NIU Junlong, ZHAO Xuemei, et al. Synthesis of chiral bis(imidazoline) ligands with biphenyl backbone and their application in the asymmetric cyclopropanation reaction[J]. Chinese Journal of Organic Chemistry, 2018, 38(1): 118-123. | |
57 | Lorenz RÖSLER, HÖFLER Mark V, BREITZKE Hergen, et al. Dirhodium complex immobilization on modified cellulose for highly selective heterogeneous cyclopropanation reactions[J]. Cellulose, 2022, 29(11): 6283-6299. |
58 | DAVIES Huw M L, WALJI Abbas M, NAGASHIMA Tadamichi. Simple strategy for the immobilization of dirhodium tetraprolinate catalysts using a pyridine-linked solid support[J]. Journal of the American Chemical Society, 2004, 126(13): 4271-4280. |
59 | GUTMANN Torsten, LIU Jiquan, ROTHERMEL Niels, et al. Natural abundance 15N NMR by dynamic nuclear polarization: Fast analysis of binding sites of a novel amine-carboxyl-linked immobilized dirhodium catalyst[J]. Chemistry-A Europen Journal, 2015, 21(9): 3798-3805. |
60 | LIU Jiquan, GROSZEWICZ Pedro B, WEN Qingbo, et al. Revealing structure reactivity relationships in heterogenized dirhodium catalysts by solid-state NMR techniques[J]. The Journal of Physical Chemistry C, 2017, 121(32): 17409-17416. |
61 | LI Zhenzhong, Lorenz RÖSLER, WISSEL Till, et al. Immobilization of a chiral dirhodium catalyst on SBA-15 via click-chemistry: Application in the asymmetric cyclopropanation of 3-diazooxindole with aryl alkenes[J]. Journal of CO2 Utilization, 2021, 52: 101682. |
62 | Jiquan LIU , PLOG Andreas, GROSZEWICZ Pedro, et al. Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: Synthesis and solid-state NMR characterization[J]. Chemistry-A European Journal, 2015, 21(35): 12414-12420. |
63 | LEVCHENKO Vladimir, Bård SUNDSLI, Sigurd ØIEN-ØDEGAARD, et al. Bottom-up synthesis of acrylic and styrylic RhⅡ carboxylate polymer beads: Solid-supported analogs of Rh2(OAc)4 [J]. European Journal of Organic Chemistry, 2018, 2018(44): 6150-6157. |
64 | ALCÓN M J, CORMA A, IGLESIAS Marta, et al. From homogeneous to heterogeneous catalysis: zeolite supported metal complexes with C2-multidentate nitrogen ligands. Application as catalysts for olefin hydrogenation and cyclopropanation reactions[J]. Journal of Organometallic Chemistry, 2002, 655(1/2): 134-145. |
65 | CIAMMAICHELLA Alina, CARDONI Valeria, LEONI Aessandro, et al. Rhodium porphyrin bound to a Merrifield resin as heterogeneous catalyst for the cyclopropanation reaction of olefins[J]. Molecules, 2016, 21(3): 278. |
66 | GILL Christopher S, VENKATASUBBAIAH Krishnan, JONES Christopher W. Recyclable polymer- and silica-supported ruthenium(Ⅱ)-salen bis-pyridine catalysts for the asymmetric cyclopropanation of olefins[J]. Advanced Synthesis & Catalysis, 2009, 351(9): 1344-1354. |
67 | ZHANG Junlong, LIU Yunling, CHE Chiming. Chiral ruthenium porphyrin encapsulated in ordered mesoporous molecular sieves (MCM-41 and MCM-48) as catalysts for asymmetric alkene epoxidation and cyclopropanation[J]. Chemical Communications, 2002(23): 2906-2907. |
68 | CASELLI Alessandro, BUONOMENNA Maria Giovanna, DE BALDIRONI Federico, et al. From homogeneously to heterogeneously catalyzed cyclopropanation reactions: New polymeric membranes embedding cobalt chiral schiff base complexes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 317(1/2): 72-80. |
69 | CORMA Avelino, IGLESIAS Marta, LIABRÉS I XAMENA Francesc X, et al. Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions[J]. Chemistry-A European Journal, 2010, 16(32): 9789-9795. |
70 | HEINZ Werner R, JUNK Raphael, Iker AGIRREZABAL-TELLERIA, et al. Thermal defect engineering of precious group metal–organic frameworks: impact on the catalytic cyclopropanation reaction[J]. Catalysis Science & Technology, 2020, 10(23): 8077-8085. |
71 | SHI Fanian, SILVA Ana Rosa, ROCHA João. Metal-organic framework based on copper(Ⅰ) sulfate and 4,4'-bipyridine catalyzes the cyclopropanation of styrene[J]. Journal of Solid State Chemistry, 2011, 184(8): 2196-2203. |
72 | Konstantin EPP, BUEKEN Bart, HOFMANN Benjamin J, et al. Network topology and cavity confinement-controlled diastereoselectivity in cyclopropanation reactions catalyzed by porphyrin-based MOFs[J]. Catalysis Science & Technology, 2019, 9(22): 6452-6459. |
73 | STEENHAUT Timothy, Nicolas GRÉGOIRE, Gabriella BAROZZINO-CONSIGLIO, et al. Mechanochemical defect engineering of HKUST-1 and impact of the resulting defects on carbon dioxide sorption and catalytic cyclopropanation[J]. RSC Advances, 2020, 10(34): 19822-19831. |
74 | FAN Zhiying, WANG Junjun, WANG Weijia, et al. Defect engineering of copper paddlewheel-based metal-organic frameworks of type NOTT-100: Implementing truncated linkers and its effect on catalytic properties[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 37993-38002. |
[1] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[2] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[3] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[4] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[5] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[6] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[7] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[8] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[9] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[10] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[11] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[12] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[13] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[14] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[15] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |