Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 585-594.DOI: 10.16085/j.issn.1000-6613.2022-1696
Previous Articles Next Articles
TANG Chunxia1,2(), LI Meng1,2, WANG Yuxi1,2, ZONG Yongzhong3, FU Shaohai1,2
Received:
2022-09-13
Revised:
2022-11-11
Online:
2023-03-13
Published:
2023-02-25
Contact:
TANG Chunxia
唐春霞1,2(), 李萌1,2, 王玉玺1,2, 宗永忠3, 付少海1,2
通讯作者:
唐春霞
作者简介:
唐春霞(1990—),女,博士,副教授,研究方向为重金属离子吸附。E-mail:chunxia.tang@jiangnan.edu.cn。
基金资助:
CLC Number:
TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594.
唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1696
类型 | 吸附剂 | pH | 吸附能力/mg·g-1 | 优缺点 | 参考文献 |
---|---|---|---|---|---|
纤维 | CA-PCL/CS | 3 | 126 | 具有高比表面积,但其表面能高,易发生团聚,难以从水体中分离,造成二次污染 | [ |
薄膜 | K-PET-5 | 3 | 75.86 | 操作简单、节省空间和处理效率高;纯CNF薄膜的耐水性差且寿命短 | [ |
PANI/EVOH | 2 | 93.09 | [ | ||
微球 | AEM-Ⅱ | 3.1 | 123.4 | 比表面积大、传质路径短 | [ |
P/CMCNF | 2 | 1302.3 | [ | ||
水凝胶 | FCH-6 | — | 228.2 | 水凝胶价格低、亲水性、安全性、生物相容性和生物降解性等; 结构稳定性较差、不易回收 | [ |
P/RC | 2 | 578 | [ | ||
NCDs-CNF/CSgel | 2 | 294.46 | [ | ||
FNH-5 | 2 | 648.4 | [ | ||
气凝胶 | Fe/CA | 3 | 182 | 高比表面积、高吸附、多次使用、结构完整、高孔隙率和超低密度等; 易吸水坍塌 | [ |
CGP | 2 | 386.40 | [ | ||
i-PL/CSA | 3 | 210.6 | [ | ||
PAMAM-g-CNF | 2 | 377.36 | [ |
类型 | 吸附剂 | pH | 吸附能力/mg·g-1 | 优缺点 | 参考文献 |
---|---|---|---|---|---|
纤维 | CA-PCL/CS | 3 | 126 | 具有高比表面积,但其表面能高,易发生团聚,难以从水体中分离,造成二次污染 | [ |
薄膜 | K-PET-5 | 3 | 75.86 | 操作简单、节省空间和处理效率高;纯CNF薄膜的耐水性差且寿命短 | [ |
PANI/EVOH | 2 | 93.09 | [ | ||
微球 | AEM-Ⅱ | 3.1 | 123.4 | 比表面积大、传质路径短 | [ |
P/CMCNF | 2 | 1302.3 | [ | ||
水凝胶 | FCH-6 | — | 228.2 | 水凝胶价格低、亲水性、安全性、生物相容性和生物降解性等; 结构稳定性较差、不易回收 | [ |
P/RC | 2 | 578 | [ | ||
NCDs-CNF/CSgel | 2 | 294.46 | [ | ||
FNH-5 | 2 | 648.4 | [ | ||
气凝胶 | Fe/CA | 3 | 182 | 高比表面积、高吸附、多次使用、结构完整、高孔隙率和超低密度等; 易吸水坍塌 | [ |
CGP | 2 | 386.40 | [ | ||
i-PL/CSA | 3 | 210.6 | [ | ||
PAMAM-g-CNF | 2 | 377.36 | [ |
1 | ZHAO Rongrong, ZHOU Zuoming, ZHAO Xiaodan, et al. Enhanced Cr(Ⅵ) removal from simulated electroplating rinse wastewater by amino-functionalized vermiculite-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 218: 458-467. |
2 | WANG Ting, ZHANG Liyuan, LI Chaofang, et al. Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption[J]. Environmental Science & Technology, 2015, 49(9): 5654-5662. |
3 | FRANCISCO Paul Clarence M, SATO Tsutomu, OTAKE Tsubasa, et al. Mechanisms of Se(Ⅳ) co-precipitation with ferrihydrite at acidic and alkaline conditions and its behavior during aging[J]. Environmental Science & Technology, 2018, 52(8): 4817-4826. |
4 | PAN Zezhen, ZHU Xiaoming, SATPATHY Anshuman, et al. Cr(Ⅵ) adsorption on engineered iron oxide nanoparticles: Exploring complexation processes and water chemistry[J]. Environmental Science & Technology, 2019, 53(20): 11913-11921. |
5 | STERN Callie M, JEGEDE Temitope O, HULSE Vanessa A, et al. Electrochemical reduction of Cr(Ⅵ) in water: Lessons learned from fundamental studies and applications[J]. Chemical Society Reviews, 2021, 50(3): 1642-1667. |
6 | RAJAPAKSHA Anushka Upamali, SELVASEMBIAN Rangabhashiyam, ASHIQ Ahamed, et al. A systematic review on adsorptive removal of hexavalent chromium from aqueous solutions: Recent advances[J]. Science of the Total Environment, 2022, 809: 152055. |
7 | JIN Wei, DU Hao, ZHENG Shili, et al. Electrochemical processes for the environmental remediation of toxic Cr(Ⅵ): A review[J]. Electrochimica Acta, 2016, 191: 1044-1055. |
8 | SYEDA Hina Iqbal, Pow-Seng YAP. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water[J]. Science of the Total Environment, 2022, 807: 150606. |
9 | MOON Robert J, MARTINI Ashlie, NAIRN John, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994. |
10 | NISHIMURA Hiroshi, KAMIYA Akihiro, NAGATA Takashi, et al. Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls[J]. Scientific Reports, 2018, 8: 6538. |
11 | 李若男, 周丽莎, 陈舜胜, 等. 纤维素纳米纤维及其改性产物吸附重金属的研究进展[J]. 化工进展, 2022, 41(1): 310-319. |
LI Ruonan, ZHOU Lisha, CHEN Shunsheng, et al. Research progress on adsorption of heavy metals by cellulose nanofibers and their modified products[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 310-319. | |
12 | ZHAO Jiangqi, ZHANG Xiaofang, HE Xu, et al. A super biosorbent from dendrimer poly(amidoamine)-grafted cellulose nanofibril aerogels for effective removal of Cr(Ⅵ)[J]. Journal of Materials Chemistry A, 2015, 3(28): 14703-14711. |
13 | HASHEM Tawheed, IBRAHIM Ahmed H, Christof WÖLL, et al. Grafting zirconium-based metal-organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(Ⅵ) ions and methyl orange from water[J]. ACS Applied Nano Materials, 2019, 2(9): 5804-5808. |
14 | Wei LYU, WU Jiamin, ZHANG Wenlong, et al. Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(Ⅵ) and immobilization of Cr(Ⅲ)[J]. Chemical Engineering Journal, 2019, 363: 107-119. |
15 | KRETSCHMER Imme, SENN Alejandro M, Martin MEICHTRY J, et al. Photocatalytic reduction of Cr(Ⅵ) on hematite nanoparticles in the presence of oxalate and citrate[J]. Applied Catalysis B: Environmental, 2019, 242: 218-226. |
16 | YANG Shanye, LI Qian, CHEN Liang, et al. Synergistic removal and reduction of U(Ⅵ) and Cr(Ⅵ) by Fe3S4 micro-crystal[J]. Chemical Engineering Journal, 2020, 385: 123909. |
17 | LIU Chao, JIN Runa, OUYANG Xiaokun, et al. Adsorption behavior of carboxylated cellulose nanocrystal—Polyethyleneimine composite for removal of Cr(Ⅵ) ions[J]. Applied Surface Science, 2017, 408: 77-87. |
18 | LI Meng, TANG Chunxia, FU Shaohai, et al. Cellulose-based aerogel beads for efficient adsorption-reduction-sequestration of Cr(Ⅵ)[J]. International Journal of Biological Macromolecules, 2022, 216: 860-870. |
19 | XUE Fei, HE Hui, ZHU Hongxiang, et al. Structural design of a cellulose-based solid amine adsorbent for the complete removal and colorimetric detection of Cr(Ⅵ)[J]. Langmuir, 2019, 35(39): 12636-12646. |
20 | YANG Pengfei, SHU Yufang, ZHUANG Qixin, et al. Metal-organic frameworks bearing dense alkyl thiol for the efficient degradation and concomitant removal of toxic Cr(Ⅵ)[J]. Langmuir, 2019, 35(49): 16226-16233. |
21 | WANG Wenxuan, YU Feihan, BA Zhichen, et al. In-depth sulfhydryl-modified cellulose fibers for efficient and rapid adsorption of Cr(Ⅵ)[J]. Polymers, 2022, 14(7): 1482. |
22 | RONG Liduo, ZHU Zumei, WANG Bijia, et al. Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions[J]. Cellulose, 2018, 25(5): 3025-3035. |
23 | KARA Hizkeal Tsade, ANSHEBO Sisay Tadesse, SABIR Fedlu Kedir. A novel modified cellulose nanomaterials (CNMs) for remediation of chromium (Ⅵ) ions from wastewater[J]. Materials Research Express, 2020, 7(11): 115008. |
24 | ZHANG Xiaofang, ZHAO Jiangqi, CHENG Long, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption[J]. RSC Advances, 2014, 4(98): 55195-55201. |
25 | BARBOSA Rennan F S, SOUZA Alana G, MALTEZ Heloísa F, et al. Chromium removal from contaminated wastewaters using biodegradable membranes containing cellulose nanostructures[J]. Chemical Engineering Journal, 2020, 395: 125055. |
26 | BRANDES Ricardo, BROUILLETTE François, CHABOT Bruno. Phosphorylated cellulose/electrospun chitosan nanofibers media for removal of heavy metals from aqueous solutions[J]. Journal of Applied Polymer Science, 2021, 138(11): 50021. |
27 | ABOUZEID Ragab E, KHIARI Ramzi, Nahla EL-WAKIL, et al. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J]. Biomacromolecules, 2019, 20(2): 573-597. |
28 | MA Liang, SHI Xuejuan, ZHANG Xiaoxiao, et al. Electrospun cellulose acetate-polycaprolactone/chitosan core-shell nanofibers for the removal of Cr(Ⅵ)[J]. Physica Status Solidi (a), 2019, 216(22): 1900379. |
29 | JIN Xin, WANG Hongjie, JIN Xu, et al. Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr(Ⅵ)[J]. Science of the Total Environment, 2020, 710: 135546. |
30 | XU Dandan, YAN Shan, WENG Wei, et al. Cost effective nanofiber composite membranes for Cr(ⅵ) adsorption with high durability[J]. RSC Advances, 2016, 6(50): 44723-44731. |
31 | ZHANG Youwei, XU Ling, ZHAO Long, et al. Radiation synthesis and Cr(Ⅵ) removal of cellulose microsphere adsorbent[J]. Carbohydrate Polymers, 2012, 88(3): 931-938. |
32 | KIM Yunjin, PARK Jinseok, BANG Junsik, et al. Highly efficient Cr(Ⅵ) remediation by cationic functionalized nanocellulose beads[J]. Journal of Hazardous Materials, 2022, 426: 128078. |
33 | LUO Qiuyan, HUANG Xiaohui, LUO Yong, et al. Fluorescent chitosan-based hydrogel incorporating titanate and cellulose nanofibers modified with carbon dots for adsorption and detection of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2021, 407: 127050. |
34 | KIM Yunjin, BANG Junsik, KIM Jungkyu, et al. Cationic surface-modified regenerated nanocellulose hydrogel for efficient Cr(Ⅵ) remediation[J]. Carbohydrate Polymers, 2022, 278: 118930. |
35 | CHEN Xueqi, SONG Zihui, YUAN Bingnan, et al. Fluorescent carbon dots crosslinked cellulose Nanofibril/Chitosan interpenetrating hydrogel system for sensitive detection and efficient adsorption of Cu (Ⅱ) and Cr (Ⅵ)[J]. Chemical Engineering Journal, 2022, 430: 133154. |
36 | PENG Junwen, YUAN Hanmeng, REN Tingting, et al. Fluorescent nanocellulose-based hydrogel incorporating titanate nanofibers for sorption and detection of Cr(Ⅵ)[J]. International Journal of Biological Macromolecules, 2022, 215: 625-634. |
37 | XUE Xiaolin, YUAN Wei, ZHENG Zhuo, et al. Iron-loaded carbon aerogels derived from bamboo cellulose fibers as efficient adsorbents for Cr(Ⅵ) removal[J]. Polymers, 2021, 13(24): 4338. |
38 | TAN Luon Nguyen, NGUYEN Nhung Cam Thi, TRINH Anh Mai Hoang, et al. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(Ⅵ) removal[J]. Separation and Purification Technology, 2023, 304: 122415. |
39 | ZHOU Hang, ZHU Hongxiang, SHI Xiaoyu, et al. Design of amphoteric bionic fibers by imitating spider silk for rapid and complete removal of low-level multiple heavy metal ions[J]. Chemical Engineering Journal, 2021, 412: 128670. |
40 | KHALID Aina Mardhia, HOSSAIN Md Sohrab, ISMAIL Norli, et al. Isolation and characterization of magnetic oil palm empty fruits bunch cellulose nanofiber composite as a bio-sorbent for Cu(Ⅱ) and Cr(Ⅵ) removal[J]. Polymers, 2020, 13(1): 112. |
41 | HAO Shuang, JIA Zhiqian, WEN Jianping, et al. Progress in adsorptive membranes for separation—A review[J]. Separation and Purification Technology, 2021, 255: 117772. |
42 | LU Wanli, DUAN Chao, ZHANG Yanling, et al. Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr(Ⅵ) reduction[J]. Carbohydrate Polymers, 2021, 258: 117676. |
43 | 霍丹, 张希鹏, 孙悦凯, 等. 纳米纤维素吸附材料的制备及在工业废水处理中的应用[J]. 中国造纸, 2021, 40(11): 90-97. |
HUO Dan, ZHANG Xipeng, SUN Yuekai, et al. Research progress on the preparation and application of nanocellulose adsorbent in industrial wastewater treatment[J]. China Pulp & Paper, 2021, 40(11): 90-97. | |
44 | CHEN Shujun, LU Wangyang, HAN Jiale, et al. Robust three-dimensional g-C3N4@cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics[J]. Chemical Engineering Journal, 2019, 359: 119-129. |
45 | LIU Ju, HAO Dandan, SUN Huiwen, et al. Integration of MIL-101-NH2 into cellulosic foams for efficient Cr(Ⅵ) reduction under visible light[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12220-12227. |
46 | HE Xu, CHENG Long, WANG Yaru, et al. Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(Ⅵ) from water[J]. Carbohydrate Polymers, 2014, 111: 683-687. |
47 | WANG Qinyu, TIAN Yu, KONG Lingchao, et al. A novel 3D superelastic polyethyleneimine functionalized chitosan aerogels for selective removal of Cr(Ⅵ) from aqueous solution: Performance and mechanisms[J]. Chemical Engineering Journal, 2021, 425: 131722. |
[1] | XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271. |
[2] | BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883. |
[3] | Yongtao NI, Qinxin ZHAO, Yong GUI, Yungang WANG, Huaishuang SHAO. Structural design and numerical analysis of two-stagelow-pressure ejector [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 69-76. |
[4] | Xiaozhi XU, Biao LI, Kaiqiang SHI, Siyuan DONG, Zuchao JIN, Jingbin HAN. Recent advances in LDHs-based gas barrier materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2177-2186. |
[5] | Famei QIN, Xueqing QIU, Chuan SUN, Zixian DING, Zhiqiang FANG. Research progress in nanocellulose for the removal of heavy metal ions in water [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3390-3401. |
[6] | YU Bin, ZHAO Xiaoming, SUN Tian. Design and properties of nanofiber filter based on fiber orientation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3966-3973. |
[7] | SHANG Yang, WANG Yueshe. Structural design and numerical analysis of single nozzle low pressure ejector [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 107-114. |
[8] | SU Yu, CHEN Lunjian, XING Baolin, XU Bing, LI Zhengxin, ZHANG Le. Experimental research on the removal of Cr(Ⅵ) from wastewater using organic bentonite [J]. Chemical Industry and Engineering Progree, 2015, 34(09): 3481-3486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |