Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6429-6437.DOI: 10.16085/j.issn.1000-6613.2023-0056
• Materials science and technology • Previous Articles
CAO Boxun1,2,3(), CAO Liangcheng1()
Received:
2023-01-12
Revised:
2023-03-07
Online:
2024-01-08
Published:
2023-12-25
Contact:
CAO Liangcheng
通讯作者:
曹良成
作者简介:
曹伯洵(1998—),男,硕士研究生,研究方向为增材制造。E-mail:caoboxun@outlook.com。
基金资助:
CLC Number:
CAO Boxun, CAO Liangcheng. Advances of polymer functionally gradient materials by additive manufacturing[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6429-6437.
曹伯洵, 曹良成. 增材制造聚合物功能梯度材料研究进展[J]. 化工进展, 2023, 42(12): 6429-6437.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0056
PGMs类型 | 制备方法 | 典型梯度材料 |
---|---|---|
共混型 | 溶解扩散法[ 熔融挤出法[ | 聚环氧乙烷/聚羟基丁酸酯[ 聚丙烯/滑石粉/聚(丙烯腈-丁二烯-苯乙烯)[ |
共聚型 | 化学/前线聚合法[ 梯度场聚合[ | 杂萘联苯聚芳醚酮-有机硅共聚物[ 聚环氧乙烷/聚(甲基丙烯酸-丙烯酸)/铜盐[ |
填充复合型 | 纤维排列法[ 梯度场聚合[ | 碳纤维/环氧树脂[ 铜-碳化硅/铁熔氧化铝/聚酯树脂[ |
互穿网络型 | 光聚合法[ 扩散聚合法[ | 聚苯乙烯/甲基丙烯酸[ 硝基纤维素/过氧化苯甲酰/二甲基丙烯酸乙二醇酯[ |
PGMs类型 | 制备方法 | 典型梯度材料 |
---|---|---|
共混型 | 溶解扩散法[ 熔融挤出法[ | 聚环氧乙烷/聚羟基丁酸酯[ 聚丙烯/滑石粉/聚(丙烯腈-丁二烯-苯乙烯)[ |
共聚型 | 化学/前线聚合法[ 梯度场聚合[ | 杂萘联苯聚芳醚酮-有机硅共聚物[ 聚环氧乙烷/聚(甲基丙烯酸-丙烯酸)/铜盐[ |
填充复合型 | 纤维排列法[ 梯度场聚合[ | 碳纤维/环氧树脂[ 铜-碳化硅/铁熔氧化铝/聚酯树脂[ |
互穿网络型 | 光聚合法[ 扩散聚合法[ | 聚苯乙烯/甲基丙烯酸[ 硝基纤维素/过氧化苯甲酰/二甲基丙烯酸乙二醇酯[ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2012 | 硅橡胶/聚氨酯 | 交替控制出料、主被动混合 | 硬度、颜色 | [ |
2014 | 水凝胶基壳聚糖/海藻酸钠 | 交替控制出料、被动混合 | 成分变化 | [ |
2015 | 多糖水凝胶 | 交替控制出料、被动混合 | 成分变化、拉伸强度 | [ |
2015 | 水/甘油混合物、环氧树脂、水基纤维素 | 交替控制出料、主动混合 | 颜色、反应速率、电阻 | [ |
2015 | 氧化铁/聚氨酯丙烯酸光敏树脂 | 磁辅助氧化铁连续分布 | 导热、导电 | [ |
2017 | 纳米银棱柱/聚乙二醇二丙烯酸酯 | 交替控制出料、被动混合 | 吸收波长 | [ |
2017 | 海藻酸钠/聚丙烯酰胺水凝胶/丙烯酸酯聚氨酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2018 | 甲基丙烯酸酯/丙烯酸酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2019 | 碳化硅/硅胶 | 交替控制出料、被动混合 | 黏度、强度、模量 | [ |
2019 | 液晶高分子 | 挤出力、温度 | 取向梯度、机械性能 | [ |
2020 | 纤维素 | 交替控制出料、被动混合 | 弹性模量、吸水性 | [ |
2020 | 纤维素、几丁质、果胶 | 交替控制出料、被动混合 | 机械性能、流变性能 | [ |
2020 | 液晶高分子 | 打印速度、路径 | 弹性模量 | [ |
2020 | 碳化硅/聚二甲基硅氧烷 | 交替控制出料、被动混合 | 拉伸模量、硬度 | [ |
2022 | 有机硅光敏树脂 | 交替控制出料、被动混合 | 颜色 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2012 | 硅橡胶/聚氨酯 | 交替控制出料、主被动混合 | 硬度、颜色 | [ |
2014 | 水凝胶基壳聚糖/海藻酸钠 | 交替控制出料、被动混合 | 成分变化 | [ |
2015 | 多糖水凝胶 | 交替控制出料、被动混合 | 成分变化、拉伸强度 | [ |
2015 | 水/甘油混合物、环氧树脂、水基纤维素 | 交替控制出料、主动混合 | 颜色、反应速率、电阻 | [ |
2015 | 氧化铁/聚氨酯丙烯酸光敏树脂 | 磁辅助氧化铁连续分布 | 导热、导电 | [ |
2017 | 纳米银棱柱/聚乙二醇二丙烯酸酯 | 交替控制出料、被动混合 | 吸收波长 | [ |
2017 | 海藻酸钠/聚丙烯酰胺水凝胶/丙烯酸酯聚氨酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2018 | 甲基丙烯酸酯/丙烯酸酯 | 交替控制出料、被动混合 | 弹性模量 | [ |
2019 | 碳化硅/硅胶 | 交替控制出料、被动混合 | 黏度、强度、模量 | [ |
2019 | 液晶高分子 | 挤出力、温度 | 取向梯度、机械性能 | [ |
2020 | 纤维素 | 交替控制出料、被动混合 | 弹性模量、吸水性 | [ |
2020 | 纤维素、几丁质、果胶 | 交替控制出料、被动混合 | 机械性能、流变性能 | [ |
2020 | 液晶高分子 | 打印速度、路径 | 弹性模量 | [ |
2020 | 碳化硅/聚二甲基硅氧烷 | 交替控制出料、被动混合 | 拉伸模量、硬度 | [ |
2022 | 有机硅光敏树脂 | 交替控制出料、被动混合 | 颜色 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考 文献 |
---|---|---|---|---|
2015 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2015 | PLA/尼龙 | 交替控制出料、 被动混合 | 颜色、拉伸强度 | [ |
2016 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2017 | PLA/石墨烯 | 交替控制出料 | 电阻性能 | [ |
2018 | PLA/ABS/HIPS | 交替控制出料、 被动混合 | 断裂强度 | [ |
2019 | PLA/TPU | 交替控制出料、 被动混合 | 弯曲强度、 拉伸强度 | [ |
2020 | ABS/PC | 交替控制出料 | 拉伸、弹性模量 | [ |
2020 | ABS/陶瓷 | 交替控制出料 | 介电常数 | [ |
2022 | PLA/RGO | 交替控制出料、 被动混合 | 吸波性能 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考 文献 |
---|---|---|---|---|
2015 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2015 | PLA/尼龙 | 交替控制出料、 被动混合 | 颜色、拉伸强度 | [ |
2016 | ABS P400 | 不同区域不同材料 | 密度、弹性模量 | [ |
2017 | PLA/石墨烯 | 交替控制出料 | 电阻性能 | [ |
2018 | PLA/ABS/HIPS | 交替控制出料、 被动混合 | 断裂强度 | [ |
2019 | PLA/TPU | 交替控制出料、 被动混合 | 弯曲强度、 拉伸强度 | [ |
2020 | ABS/PC | 交替控制出料 | 拉伸、弹性模量 | [ |
2020 | ABS/陶瓷 | 交替控制出料 | 介电常数 | [ |
2022 | PLA/RGO | 交替控制出料、 被动混合 | 吸波性能 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2016 | 光敏树脂G+ yellow | 光照强度 | 弹性模量 | [ |
2016 | 环氧和丙烯酸酯单体 | 光照波长、照射时间 | 压缩模量 | [ |
2019 | 双酚A型二酐/甲基丙烯酸缩水甘油酯/丙烯酸丁酯 | 光照强度、光-热固化 | 弹性模量、玻璃化转变温度 | [ |
2019 | 三甘醇二甲基丙烯酸酯/双酚A甲基丙烯酸缩水甘油酯 | 两个波长促进和抑制聚合 | 机械性能 | [ |
2021 | 光敏树脂Orange Tough Resin | 灰度像素、光照强度 | 体积模量、弹性模量 | [ |
2021 | 聚乙二醇二丙烯酸酯/四(3-巯基丙酸)季戊四醇酯/二苯基(2,4,6-三甲基苯甲酰基)氧化膦 | 层厚、光照强度和曝光时间 | 弹性模量 | [ |
年份 | 主要材料 | 梯度形成方法 | 梯度性能 | 参考文献 |
---|---|---|---|---|
2016 | 光敏树脂G+ yellow | 光照强度 | 弹性模量 | [ |
2016 | 环氧和丙烯酸酯单体 | 光照波长、照射时间 | 压缩模量 | [ |
2019 | 双酚A型二酐/甲基丙烯酸缩水甘油酯/丙烯酸丁酯 | 光照强度、光-热固化 | 弹性模量、玻璃化转变温度 | [ |
2019 | 三甘醇二甲基丙烯酸酯/双酚A甲基丙烯酸缩水甘油酯 | 两个波长促进和抑制聚合 | 机械性能 | [ |
2021 | 光敏树脂Orange Tough Resin | 灰度像素、光照强度 | 体积模量、弹性模量 | [ |
2021 | 聚乙二醇二丙烯酸酯/四(3-巯基丙酸)季戊四醇酯/二苯基(2,4,6-三甲基苯甲酰基)氧化膦 | 层厚、光照强度和曝光时间 | 弹性模量 | [ |
1 | CHEN Jiayao, LIU Xiaojiang, TIAN Yujia, et al. 3D-printed anisotropic polymer materials for functional applications[J]. Advanced Materials, 2022, 34(5): e2102877. |
2 | NIINO Masayuki, HIRAI Toshio, WATANABE Ryuzo. Functionally gradient materials. in pursuit of super heat resisting materials for spacecraft[J]. Journal of the Japan Society for Composite Materials, 1987, 13(6): 257-264. |
3 | RASHEEDAT Modupe Mahamood, ESTHER Titilayo Akinlabi. Functionally graded materials[M]. Cham: Springer International Publishing, 2017. |
4 | LI Chunching, OUYANG Liliang, ARMSTRONG James P K, et al. Advances in the fabrication of biomaterials for gradient tissue engineering[J]. Trends in Biotechnology, 2021, 39(2): 150-164. |
5 | GIACHINI P S, GUPTA S S, WANG W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Science Advances, 2020, 6(8): eaay0929. |
6 | GARLAND Anthony, FADEL Georges. Design and manufacturing functionally gradient material objects with an off the shelf three-dimensional printer: Challenges and solutions[J]. Journal of Mechanical Design, 2015, 137(11): 111407. |
7 | MARRI G K, BALAJI C. Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120454. |
8 | LI Weikai, HAN Baohong. Research and application of functionally gradient materials[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394(2): 022065. |
9 | OUYANG Liliang, ARMSTRONG James P K, CHEN Qu, et al. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion[J]. Advanced Functional Materials, 2020, 30(1): 1908349. |
10 | SHAO Lei, GAO Qing, XIE Chaoqi, et al. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs[J]. Biofabrication, 2020, 12(3): 035014. |
11 | WU Haihua, LIU Li, CAI Yu, et al. A novel gradient graphene composite with broadband microwave absorption fabricated by fused deposition modelling[J]. Materials Technology, 2022, 37(4): 280-287. |
12 | CRAMER Corson L, WANG Hsin, MA Kaka. Performance of functionally graded thermoelectric materials and devices: A review[J]. Journal of Electronic Materials, 2018, 47(9): 5122-5132. |
13 | 张丽, 周杭生, 黄金, 等. 聚合物梯度材料的构筑及性能研究[J]. 复合材料学报, 2022, 39(9): 4244-4258. |
ZHANG Li, ZHOU Hangsheng, HUANG Jin, et al. Research progress on construction and properties of polymer gradient materials[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4244-4258. | |
14 | CHEN L, YANG C, XIAO Y, et al. Millifluidics, microfluidics, and nanofluidics: Manipulating fluids at varying length scales[J]. Materials Today Nano, 2021, 16: 100136. |
15 | GARCÍA-COLLADO A, BLANCO J M, GUPTA M K, et al. Advances in polymers based multi-material additive-manufacturing techniques: State-of-art review on properties and applications[J]. Additive Manufacturing, 2022, 50: 102577. |
16 | ZHANG Chi, CHEN Fei, HUANG Zhifeng, et al. Additive manufacturing of functionally graded materials: A review[J]. Materials Science and Engineering A, 2019, 764: 138209. |
17 | CLAUSSEN Kai U, SCHEIBEL Thomas, SCHMIDT Hans-Werner, et al. Polymer gradient materials: Can nature teach us new tricks? [J]. Macromolecular Materials and Engineering, 2012, 297(10): 938-957. |
18 | ZHAO Li, KATSUNORI Tsuchiya, YOSHIO Inoue. Fully-biodegradable poly(3-hydroxybutyrate)/poly(vinyl alcohol) blend films with compositional gradient[J]. Macromolecular Bioscience, 2004, 4(8): 699-705. |
19 | ZHAO Li, HE Yong, INOUE Yoshio. Quantitative analysis of compositional distribution in biodegradable poly(ethylene oxide)/poly(3-hydroxybutyrate) blend film with compositional gradient by FTIR microspectroscopy[J]. Macromolecular Chemistry and Physics, 2005, 206(8): 841-849. |
20 | HONMA Tomonori, ZHAO Li, ASAKAWA Naoki, et al. Poly(ɛ-caprolactone)/chitin and poly(ɛ-caprolactone)/chitosan blend films with compositional gradients: Fabrication and their biodegradability[J]. Macromolecular Bioscience, 2006, 6(3): 241-249. |
21 | SAITO Takashi, TANUMA Hiroaki, PAN Pengju, et al. Gelatin/poly(ethylene oxide) blend films with compositional gradient: Fabrication and characterization[J]. Macromolecular Materials and Engineering, 2010, 295(3): 256-262. |
22 | WEN Bianying, WU Gang, YU Jian. A flat polymeric gradient material: Preparation, structure and property[J]. Polymer, 2004, 45(10): 3359-3365. |
23 | 熊锃. 端羟基聚丁二烯型聚氨酯梯度材料的制备[D]. 武汉: 武汉理工大学, 2013. |
XIONG Zeng. Synthesis of hydroxyl-terminated polybutadiene-polyurethane gradient material[D]. Wuhan: Wuhan University of Technology, 2013. | |
24 | DANIELE Nuvoli, VALERIA Alzari, POJMAN John A, et al. Synthesis and characterization of functionally gradient materials obtained by frontal polymerization[J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3600-3606. |
25 | 何钦政. 杂萘联苯聚芳醚酮-有机硅共聚物的合成及其梯度材料的研究[D]. 大连: 大连理工大学, 2020. |
HE Qinzheng. Synthesis of poly(phthalazinone ether ketone)-polysiloxane and study on gradient materials of their copolymers [D]. Dalian: Dalian University of Technology, 2020 | |
26 | ALMASI Davood, SADEGHI Maliheh, LAU Woei Jye, et al. Functionally graded polymeric materials: A brif review of current fabrication methods and introduction of a novel fabrication method[J]. Materials Science and Engineering C, 2016, 64(1): 102-107. |
27 | JANG J, HAN S. Mechanical properties of glass-fibre mat/PMMA functionally gradient composite[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1045-1053. |
28 | HUANG Z M, WANG Q A, RAMAKRISHNA S. Tensile behaviour of functionally graded braided carbon fibre/epoxy composite material[J]. Polymers and Polymer Composites, 2002, 10(4): 307-314. |
29 | KLINGSHIRN C, KOIZUMI M, HAUPERT F, et al. Structure and wear of centrifuged epoxy-resin/carbon fiber functionally graded materials[J]. Journal of Materials Science Letters, 2000, 19(3): 263-266. |
30 | LI Jing, PENG Xiaoling. Fabrication of Ni/epoxy resin functionally graded materials via a reciprocating magnetic field[J]. Journal of Magnetics, 2020, 25(3): 383-388. |
31 | FARAHNAKIAN M, ELHAMI JOOSHEGHAN S, MORADI M. Dual filler functionally graded polymermaterials-manufacturing process and characteristics[J]. Materials and Manufacturing Processes, 2021, 36(3): 301-307. |
32 | HIDEYUKI Nakanishi, NOBUHIRO Namikawa, TOMOHISA Norisuye, et al. Autocatalytic phase separation and graded co-continuous morphology generated by photocuring[J]. Soft Matter, 2006, 2(2): 149-156. |
33 | XIAO Zhenggang, YING Sanjiu, HE Weidong, et al. Synthesis, morphology, component distribution, and mechanical properties of nitrocellulose/gradient poly(ethylene glycol dimethacrylate) semi-IPN material[J]. Journal of Applied Polymer Science, 2007, 105(2): 510-514. |
34 | FRANCHIN Giorgia, SCANFERLA Paolo, ZEFFIRO Luca, et al. Direct ink writing of geopolymeric inks[J]. Journal of the European Ceramic Society, 2017, 37(6): 2481-2489. |
35 | ZHOU Luyu, GAO Qing, FU Jianzhong, et al. Multimaterial 3D printing of highly stretchable silicone elastomers[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23573-23583. |
36 | OXMAN Neri, TSAI Elizabeth, FIRSTENBERG Michal. Digital anisotropy: A variable elasticity rapid prototyping platform[J]. Virtual and Physical Prototyping, 2012, 7(4): 261-274. |
37 | Laia MOGAS-SOLDEVILA, Jorge DURO-ROYO, OXMAN Neri. Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion[J]. 3D Printing and Additive Manufacturing, 2014, 1(3): 141-151. |
38 | Jorge DURO-ROYO, Laia MOGAS-SOLDEVILA, OXMAN Neri. Flow-based fabrication: An integrated computational workflow for design and digital additive manufacturing of multifunctional heterogeneously structured objects[J]. Computer-Aided Design, 2015, 69: 143-154. |
39 | KOKKINIS Dimitri, SCHAFFNER Manuel, STUDART André R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nature Communications, 2015, 6(1): 8643. |
40 | BAKARICH Shannon E, GORKIN Robert, GATELY Reece, et al. 3D printing of tough hydrogel composites with spatially varying materials properties[J]. Additive Manufacturing, 2017, 14: 24-30. |
41 | KOKKINIS Dimitri, BOUVILLE Florian, STUDART André R. 3D printing of materials with tunable failure via bioinspired mechanical gradients[J]. Advanced Materials, 2018, 30(19): 1705808. |
42 | HASSAN Islam, SELVAGANAPATHY Ponnambalam Ravi. A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing[J]. Additive Manufacturing, 2022, 50: 102559. |
43 | HARDIN James O, OBER Thomas J, VALENTINE Alexander D, et al. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks[J]. Advanced Materials, 2015, 27(21): 3279-3284. |
44 | JOANNA Idaszek, MARCO Costantini, KARLSEN Tommy A, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head[J]. Biofabrication, 2019, 11(4): 044101. |
45 | HARING Alexander P, KHAN Assad U, LIU Guoliang, et al. 3D printed functionally graded plasmonic constructs[J]. Advanced Optical Materials, 2017, 5(18): 1700367. |
46 | REN Luquan, SONG Zhengyi, LIU Huili, et al. 3D printing of materials with spatially non-linearly varying properties[J]. Materials & Design, 2018, 156: 470-479. |
47 | OBER Thomas J, DANIELE Foresti, LEWIS Jennifer A. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12293-12298. |
48 | ORTEGA Jason M, GOLOBIC Melody, SAIN John D, et al. Active mixing of disparate inks for multimaterial 3D printing[J]. Advanced Materials Technologies, 2019, 4(7): 1800717. |
49 | NGUYEN Du T, Timothy D YEE, DUDUKOVIC Nikola A, et al. 3D printing of compositional gradients using the microfluidic circuit analogy[J]. Advanced Materials Technologies, 2019, 4(12): 1900784. |
50 | ZHANG Chun, LU Xili, FEI Guoxia, et al. 4D printing of a liquid crystal elastomer with a controllable orientation gradient[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44774-44782. |
51 | LEE Nic A, WEBER Ramon E, KENNEDY Joseph H, et al. Sequential multimaterial additive manufacturing of functionally graded biopolymer composites[J]. 3D Printing and Additive Manufacturing, 2020, 7(5): 205-215. |
52 | REN Luquan, LI Bingqian, HE Yulin, et al. Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15562-15572. |
53 | GAO Fan, ZHANG Yuanzhi. Method for preparing micro-nano-particle-reinforced PDMS-based FGM using 3D printing single nozzle[J]. Materials Letters, 2020, 280: 128548. |
54 | YANG Chenjing, WU Baiheng, RUAN Jian, et al. 3D-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets[J]. Advanced Materials, 2021, 33(10): e2006361. |
55 | BERGONZI L, VETTORI M, STEFANINI L, et al. Different infill geometry influence on mechanical properties of FDM produced PLA[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1038(1): 012071. |
56 | 刘崇蒙. 基于熔融沉积技术的多色多材料快速成型系统的研究[D]. 武汉: 华中科技大学, 2019. |
LIU Chongmeng. Research on multi-color and multi-material rapid prototyping system based on fused deposition modeling[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
57 | ZHUANG Yuan, SONG Wentong, NING Gang, et al. 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites[J]. Materials & Design, 2017, 126: 135-140. |
58 | MOHAMMAD ABU HASAN Khondoker, ASAD Asad, DAN Sameoto. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling[J]. Rapid Prototyping Journal, 2018, 24(6): 921-934. |
59 | SRIVASTAVA Manu, MAHESHWARI Sachin, KUNDRA T K. Virtual modelling and simulation of functionally graded material component using FDM technique[J]. Materials Today: Proceedings, 2015, 2(4/5): 3471-3480. |
60 | SRIVASTAVA Manu, MAHESHWARI Sachin, KUNDRA T K, et al. Virtual design, modelling and analysis of functionally graded materials by fused deposition modeling[J]. Materials Today: Proceedings, 2016, 3(10): 3660-3665. |
61 | HASANOV Seymur, GUPTA Ankit, NASIROV Aslan, et al. Mechanical characterization of functionally graded materials produced by the fused filament fabrication process[J]. Journal of Manufacturing Processes, 2020, 58: 923-935. |
62 | GOULAS Athanasios, ZHANG Shiyu, MCGHEE Jack R, et al. Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices[J]. Materials & Design, 2020, 193: 108871. |
63 | ZHOU Aiwu, XU Changyu, POJCHANUN Kanitthamniyom, et al. Magnetic soft millirobots 3D printed by circulating vat photopolymerization to manipulate droplets containing hazardous agents for in vitro diagnostics[J]. Advanced Materials, 2022, 34(15): e2200061. |
64 | PETERSON Gregory I, SCHWARTZ Johanna J, ZHANG Di, et al. Production of materials with spatially-controlled cross-link density via vat photopolymerization[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29037-29043. |
65 | KUANG Xiao, WU Jiangtao, CHEN Kaijuan, et al. Grayscale digital light processing 3D printing for highly functionally graded materials[J]. Science Advances, 2019, 5(5): eaav5790. |
66 | ZHANG Qiang, KUANG Xiao, WENG Shayuan, et al. Shape-memory balloon structures by pneumatic multi-material 4D printing[J]. Advanced Functional Materials, 2021, 31(21): 2010872. |
67 | VALIZADEH Iman, ABOUD Ahmad AL, Edgar DÖRSAM, et al. Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing[J]. Additive Manufacturing, 2021, 47: 102108. |
68 | LARSEN Esben Kjaer Unmack, LARSEN Niels, B, ALMDAL Kristoffer, et al. Multimaterial hydrogel with widely tunable elasticity by selective photopolymerization of PEG diacrylate and epoxy monomers[J]. Journal of Polymer Science Part B: Polymer Physics, 2016, 54(13): 1195-1201. |
69 | UZCATEGUI Asais Camila, HIGGINS Callie I, HERGERT John E, et al. Microscale photopatterning of through‐thickness modulus in a monolithic and functionally graded 3D‐printed part[J]. Small Science, 2021, 1(3): 2000017. |
70 | DE BEER Martin P, VAN DER LAAN Harry L, COLE Megan A, et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning[J]. Science Advances, 2019, 5(1): eaau8723. |
71 | DOUBROVSKI E L, TSAI E Y, DIKOVSKY D, et al. Voxel-based fabrication through material property mapping: a design method for bitmap printing[J]. Computer-Aided Design, 2015, 60: 3-13. |
72 | CHRISTOPH Bader, DOMINIK Kolb, WEAVER James C, et al. Making data matter: Voxel printing for the digital fabrication of data across scales and domains[J]. Science Advances, 2018, 4(5): eaas8652. |
73 | LAN Hongbo. Active mixing nozzle for multi-material and multi-scale 3D printing[C]//Volume 2: Additive Manufacturing; Materials. June 4-8, 2017. Los Angeles, California, USA. American Society of Mechanical Engineers, 2017: 040904. |
74 | 冯东, 王博, 戚方伟, 等. 选择性激光烧结用聚合物基材料制备研究进展[J]. 化工进展, 2021, 40(8): 4290-4304. |
FENG Dong, WANG Bo, QI Fangwei, et al. Research progress in the preparation of polymer-based materials for selective laser sintering[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4290-4304. | |
75 | CHUNG Haseung, Suman DAS. Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering[J]. Materials Science and Engineering A, 2006, 437(2): 226-234. |
76 | CHUNG Haseung, Suman DAS. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering[J]. Materials Science and Engineering A, 2008, 487(1/2): 251-257. |
77 | CHUEH Yuanhui, ZHANG Xiaoji, WEI Chao, et al. Additive manufacturing of polymer-metal/ceramic functionally graded composite components via multiple material laser powder bed fusion[J]. Journal of Manufacturing Science and Engineering, 2020, 142(5): 051003. |
78 | PENG Xirui, KUANG Xiao, ROACH Devin J, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices[J]. Additive Manufacturing, 2021, 40: 101911. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[4] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[5] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[6] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[7] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[8] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[9] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[10] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[11] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[14] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |