1 |
刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896.
|
|
LIU Wei, WAN Yanming, XIONG Yalin, et al. Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896.
|
2 |
俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152.
|
|
YU Hongmei, SHAO Zhigang, HOU Ming, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152.
|
3 |
SONG Zhongxin, WANG Kaixi, SUN Qian, et al. High-performance ammonium cobalt phosphate nanosheet electrocatalyst for alkaline saline water oxidation[J]. Advanced Science, 2021, 8(14): 2100498.
|
4 |
LI Leigang, WANG Pengtang, SHAO Qi, et al. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chemical Society Reviews, 2020, 49(10): 3072-3106.
|
5 |
YANG Yingjie, YU Yanhui, LI Jing, et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction[J]. Nano-Micro Letters, 2021, 13(1): 160.
|
6 |
王培灿, 万磊, 徐子昂, 等. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946.
|
|
WANG Peican, WAN Lei, XU Ziang, et al. Interface engineering of self-supported electrode for electrochemical water splitting[J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946.
|
7 |
ZHU Jing, HU Liangsheng, ZHAO Pengxiang, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
|
8 |
YE Min, HU Feng, YU Deshuang, et al. Hierarchical FeC/MnO2 composite with in situ grown CNTs as an advanced trifunctional catalyst for water splitting and Metal-Air batteries[J]. Ceramics International, 2021, 47(13): 18424-18432.
|
9 |
LIN Liwei, PIAO Shuqing, CHOI Yejung, et al. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges[J]. EnergyChem, 2022, 4(2): 100072.
|
10 |
JIANG Nan, SHI Shunjie, CUI Yanyan, et al. Effect of phosphorization temperature on the structure and hydrogen evolution reaction performance of nickel cobalt phosphide electrocatalysts[J]. Catalysis Communications, 2022, 171: 106507.
|
11 |
武亚强, 刘思明, 金顺敬, 等. 锌掺杂NiCoP多孔双层阵列电极材料的制备及电催化产氢性能[J]. 高等学校化学学报, 2021, 42(8): 2483-2492.
|
|
WU Yaqiang, LIU Siming, JIN Shunjing, et al. Synthesis of Zn-doped NiCoP catalyst with porous double-layer nanoarray structure and its electrocatalytic properties for hydrogen evolution[J]. Chemical Journal of Chinese Universities, 2021, 42(8): 2483-2492.
|
12 |
熊昆, 高媛, 周桂林. 电解水析氢非铂催化剂的设计与发展[J]. 中国有色金属学报, 2017, 27(6): 1289-1301.
|
|
XIONG Kun, GAO Yuan, ZHOU Guilin. Design and development of non-Pt catalysts in water electrolysis for hydrogen production[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1289-1301.
|
13 |
LIN Jinghuang, YAN Yaotian, LI Chun, et al. Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting[J]. Nano-Micro Letters, 2019, 11(1): 55.
|
14 |
LIN Jinghuang, YAN Yaotian, LIU Tao, et al. Optimize the electrocatalytic performances of NiCoP for water splitting by the synergic effect of S dopant and P vacancy[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16161-16168.
|
15 |
CHENG Zhihua, XIAO Yukun, WU Wenpeng, et al. All-pH-tolerant In-plane heterostructures for efficient hydrogen evolution reaction[J]. ACS Nano, 2021, 15(7): 11417-11427.
|
16 |
WANG P, QI J, CHEN X, et al. Three-dimensional heterostructured NiCoP@NiMn-layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4385-4395.
|
17 |
JIANG N, SHI S J, CUI Y Y, et al. The effect of calcination temperature on the hydrogen evolution reaction performance of Co/NiCoP nano-heterojunction[J]. Journal of Alloys and Compounds, 2022, 929: 167229.
|
18 |
SONG Haoqiang, WU Min, TANG Zhiyong, et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angewandte Chemie International Edition, 2021, 60(13): 7234-7244.
|
19 |
JIANG Nan, JIANG Bolong, WANG Shuai, et al. Efficient Ni2P/Al2O3 hydrodesulfurization catalysts from surface hybridization of Al2O3 particles with graphite-like carbon[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121: 139-146.
|
20 |
LIN Yan, SUN Kaian, CHEN Xiaomeng, et al. High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater[J]. Journal of Energy Chemistry, 2021, 55: 92-101.
|
21 |
ZHOU Peng, ZHAI Guangyao, Xingshuai LYU, et al. Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect[J]. Applied Catalysis B: Environmental, 2021, 283: 119590.
|
22 |
于博, 李研, 刘辉, 等. NiCoP合金纳米棒阵列制备及电催化析氢性能研究[J]. 人工晶体学报, 2020, 49(2): 270-275.
|
|
YU Bo, LI Yan, LIU Hui, et al. Fabrication of NiCoP alloy nanorod array and its electrocatalytic hydrogen evolution performance[J]. Journal of Synthetic Crystals, 2020, 49(2): 270-275.
|
23 |
ZHANG Lipeng, ZHANG Juntao, FANG Jinjie, et al. Cr-doped CoP nanorod arrays as high-performance hydrogen evolution reaction catalysts at high current density[J]. Small, 2021, 17(28): 2100832.
|
24 |
ZHU Zizheng, XU Kai, GUO Wen, et al. Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media[J]. Applied Catalysis B: Environmental, 2022, 304: 120985.
|
25 |
XU Shengjie, QI Yue, LU Yikai, et al. Fe-Doped CoP holey nanosheets as bifunctional electrocatalysts for efficient hydrogen and oxygen evolution reactions[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26391-26401.
|
26 |
XU Xiaobing, ZHONG Wei, ZHANG Lei, et al. NiCo-LDHs derived NiCo2S4 nanostructure coated by MoS2 nanosheets as high-efficiency bifunctional electrocatalysts for overall water splitting[J]. Surface and Coatings Technology, 2020, 397: 126065.
|
27 |
NIU Jingjing, XUE Zhe, TANG Jiuchao, et al. Tailoring alloy compositions by glucose towards superior Ni-Cu-C electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2023:doi.org/10.1016/j.ijhydene.2023.01.318.
|
28 |
WANG Jiangan, HUA Wei, LI Mingyu, et al. Structurally engineered hyperbranched NiCoP arrays with superior electrocatalytic activities toward highly efficient overall water splitting[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41237-41245.
|
29 |
JIANG Deli, XU Yan, YANG Rong, et al. CoP3/CoMoP heterogeneous nanosheet arrays as robust electrocatalyst for pH-universal hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9309-9317.
|
30 |
PI Chaoran, ZHAO Zhiyang, ZHANG Xuming, et al. In situ construction of γ-MoC/VN heterostructured electrocatalysts with strong electron coupling for highly efficient hydrogen evolution reaction[J]. Chemical Engineering Journal, 2021, 416: 129130.
|
31 |
WANG Lili, HE Wurigamula, YIN Duanduan, et al. CoN/MoC embedded in nitrogen-doped multi-channel carbon nanofibers as an efficient acidic and alkaline hydrogen evolution reaction electrocatalysts[J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113354.
|
32 |
ZHANG Bing, SHAN Jiongwei, WANG Weilong, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting[J]. Small, 2022, 18(12): 2106012.
|
33 |
WU Yuchen, WANG Yongjia, WANG Zhiwei, et al. Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2021, 9(41): 23574-23581.
|