1 |
姚亚丽, 马利利, 王嘉鑫, 等. 煤基石墨烯及复合材料在储能领域的应用[J]. 化工进展, 2022, 41(6): 3077-3088.
|
|
YAO Yali, MA Lili, WANG Jiaxin, et al. Research on the application of coal-based graphene and composites in the field of energy storage[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3077-3088.
|
2 |
YANG Chen, ZHANG Xiuying, LI Jingzhen, et al. Holey graphite: A promising anode material with ultrahigh storage for lithium-ion battery[J]. Electrochimica Acta, 2020, 346: 136244.
|
3 |
WU Feixiang, MAIER Joachim, YU Yan. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614.
|
4 |
WANG Fei, WANG Bo, LI Jingxuan, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218.
|
5 |
张佰伦, 王凯, 李嘉辉, 等. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 115-127.
|
|
ZHANG Bailun, WANG Kai, LI Jiahui, et al. Progress in carbon nanomaterials for lithium-ion batteries[J]. Materials Reports, 2022, 36(20): 115-127.
|
6 |
ZHANG Hao, YANG Yang, REN Dongsheng, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170.
|
7 |
王振帅, 邢宝林, 韩学锋, 等. 煤沥青基微晶炭的制备及其储锂性能[J]. 化工进展, 2021, 40(1): 313-323.
|
|
WANG Zhenshuai, XING Baolin, HAN Xuefeng, et al. Preparation of coal tar pitch-based microcrystal carbons and their lithium storage properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 313-323.
|
8 |
时杰, 刘庆, 臧浩宇, 等. 石墨基锂离子电池负极材料研究进展[J]. 化工新型材料, 2019, 47(1): 42-46.
|
|
SHI Jie, LIU Qing, ZANG Haoyu, et al. Research progress on graphite-based cathode material for lithium ionic battery[J]. New Chemical Materials, 2019, 47(1): 42-46.
|
9 |
邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
|
|
XING Baolin, BAO Tiao, LI Xusheng, et al. Research progress on structure regulation and surface modification of graphite anode materials for lithium ion batteries[J]. Materials Reports, 2020, 34(15): 15063-15068.
|
10 |
张丽津, 彭大春, 何月德, 等. 氧化微扩层处理对天然鳞片石墨结构及其电化学性能的影响研究[J]. 炭素技术, 2016, 35(6): 17-22.
|
|
ZHANG Lijin, PENG Dachun, HE Yuede, et al. Structure and electrochemical performance of flake graphite anode materials with mildly expanded interlayer by oxidation[J]. Carbon Techniques, 2016, 35(6): 17-22.
|
11 |
SUN Yali, HAN Fei, ZHANG Chengzhi, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology, 2019, 7(4): 1801091.
|
12 |
何月德, 简志敏, 刘洪波, 等. 微扩层鳞片石墨负极材料的制备及电化学性能研究[J]. 无机材料学报, 2013, 28(9): 931-936.
|
|
HE Yuede, JIAN Zhimin, LIU Hongbo, et al. Preparation and electrochemical performance of flake graphite anode materials with slightly expanded interlayer[J]. Journal of Inorganic Materials, 2013, 28(9): 931-936.
|
13 |
LIN Yuxiao, HUANG Zhenghong, YU Xiaoliang, et al. Mildly expanded graphite for anode materials of lithium ion battery synthesized with perchloric acid[J]. Electrochimica Acta, 2014, 116: 170-174.
|
14 |
LI Xiaojing, LEI Yu, QIN Lei, et al. Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries[J]. Carbon, 2021, 172: 200-206.
|
15 |
邢宝林, 张传涛, 谌伦建, 等. 高性能煤基石墨负极材料的制备及其储锂特性研究[J]. 中国矿业大学学报, 2019, 48(5): 1133-1142.
|
|
XING Baolin, ZHANG Chuantao, CHEN Lunjian, et al. Preparation of high performance coal-based graphite anode materials and their lithium storage properties[J]. Journal of China University of Mining & Technology, 2019, 48(5): 1133-1142.
|
16 |
张亚婷, 李可可, 任绍昭, 等. 煤基石墨烯/Fe2O3自支撑电极的制备及其储锂性能[J]. 煤炭学报, 2021, 46(4): 1173-1181.
|
|
ZHANG Yating, LI Keke, REN Shaozhao, et al. Coal-based graphene/Fe2O3 nanostructures grow on nickel foams as an enhanced free-standing anode for lithium-ion batteries[J]. Journal of China Coal Society, 2021, 46(4): 1173-1181.
|
17 |
吴宝亮, 李子坤, 周豪杰, 等. 石墨负极材料的发展历史与研究进展[J]. 炭素技术, 2022, 41(4): 6-12.
|
|
WU Baoliang, LI Zikun, ZHOU Haojie, et al. Development history and research progress of graphite anode materials[J]. Carbon Techniques, 2022, 41(4): 6-12.
|
18 |
XING Baolin, ZHANG Chuantao, CAO Yijun, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology, 2018, 172: 162-171.
|
19 |
ZHAO Tingkai, SHE Shengfei, JI Xianglin, et al. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries[J]. Scientific Reports, 2016, 6: 33833.
|
20 |
KIM S, LEE J Y, YOON T H. Few-layer-graphene with high yield and low sheet resistance via mild oxidation of natural graphite[J]. RSC Advances, 2017, 7(57): 35717-35723.
|
21 |
曾会会, 邢宝林, 徐冰, 等. 煤基碳纳米片宏观体的结构调控及电化学性能[J]. 煤炭学报, 2021, 46(4): 1182-1193.
|
|
ZENG Huihui, XING Baolin, XU Bing, et al. Microstructural regulation of coal-based carbon nanosheets and their electrochemical performance[J]. Journal of China Coal Society, 2021, 46(4): 1182-1193.
|
22 |
ZHANG Shuai, LIU Qinfu, ZHANG Hao, et al. Structural order evaluation and structural evolution of coal derived natural graphite during graphitization[J]. Carbon, 2020, 157: 714-723.
|
23 |
ZENG Huihui, XING Baolin, ZHANG Chuantao, et al. In situ synthesis of MnO2/porous graphitic carbon composites as high-capacity anode materials for lithium-ion batteries[J]. Energy & Fuels, 2020, 34(2): 2480-2491.
|
24 |
KIM Jisu, NITHYA JEGHAN Shrine Maria, LEE Gibaek. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: 110325.
|
25 |
邢宝林, 曾会会, 郭晖, 等. 基于机械力化学作用煤基石墨纳米片的制备及其电化学储能特性[J]. 煤炭学报, 2022, 47(2): 958-968.
|
|
XING Baolin, ZENG Huihui, GUO Hui, et al. Preparation of coal-based graphite nanoplatelets based on mechanochemistry and the characterization of their electrochemical energy storage performance[J]. Journal of China Coal Society, 2022, 47(2): 958-968.
|
26 |
刘亚雄, 李国栋, 郭星, 等. 包覆工艺对天然石墨负极材料的结构和性能影响研究[J]. 炭素技术, 2022, 41(6): 46-50.
|
|
LIU Yaxiong, LI Guodong, GUO Xing, et al. Effect of coating process on the structure and properties of natural graphite anode material[J]. Carbon Techniques, 2022, 41(6): 46-50.
|
27 |
SUN Dong, ZHAO Lu, XIAO Zhihua, et al. Boosting of reversible capacity delivered at a low voltage below 0.5V in mildly expanded graphitized needle coke anode for a high-energy lithium ion battery[J]. Journal of Energy Chemistry, 2022, 74: 100-110.
|
28 |
鲍倜傲, 王振帅, 马爱玲, 等. 新型煤基微晶炭的制备及电容特性研究[J]. 洁净煤技术, 2019, 25(3): 68-74.
|
|
BAO Tiao, WANG Zhenshuai, MA Ailing, et al. Preparation and capacitance characteristics study of new coal-based microcrystalline carbon[J]. Clean Coal Technology, 2019, 25(3): 68-74.
|
29 |
GAO Sen, JIANG Qiuyi, SHI Yu, et al. High-performance lithium battery driven by hybrid lithium storage mechanism in 3D architectured carbonized eggshell membrane anode[J]. Carbon, 2020, 166: 26-35.
|
30 |
张华, 吴仙斌, 乔永民. 氧化作用对人造石墨负极材料关键指标的影响[J]. 炭素技术, 2022, 41(3): 42-45.
|
|
ZHANG Hua, WU Xianbin, QIAO Yongmin. Effect of oxidation on the key parameters of artificial graphite anode materials[J]. Carbon Techniques, 2022, 41(3): 42-45.
|