Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 6113-6125.DOI: 10.16085/j.issn.1000-6613.2023-0012
• Resources and environmental engineering • Previous Articles
GU Kai(), WU Yinkai, YIN Junquan, LI Weihua(), SUN Yingjie, ZHANG Qingjian, GE Yanchen, HE Yiyang, ZHAO Lingyan, WANG Huawei
Received:
2023-01-05
Revised:
2023-02-03
Online:
2023-12-15
Published:
2023-11-20
Contact:
LI Weihua
谷凯(), 吴寅凯, 尹俊权, 李卫华(), 孙英杰, 张庆建, 葛燕辰, 何依洋, 赵灵燕, 王华伟
通讯作者:
李卫华
作者简介:
谷凯(1996—),男,硕士研究生,研究方向为固废污染控制与资源化。E-mail:975548441@qq.com。
基金资助:
CLC Number:
GU Kai, WU Yinkai, YIN Junquan, LI Weihua, SUN Yingjie, ZHANG Qingjian, GE Yanchen, HE Yiyang, ZHAO Lingyan, WANG Huawei. Leaching behavior of heavy metals in solidified/stabilized fly ash under diversified leaching scenarios[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6113-6125.
谷凯, 吴寅凯, 尹俊权, 李卫华, 孙英杰, 张庆建, 葛燕辰, 何依洋, 赵灵燕, 王华伟. 多元浸沥场景下固化/稳定飞灰中重金属浸出行为[J]. 化工进展, 2023, 42(11): 6113-6125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0012
飞灰类型 | 制备方法 |
---|---|
螯合剂稳定化飞灰(S2) | 4%螯合剂+7%水泥+33%蒸馏水(质量比) |
磷酸稳定化飞灰(S3) | 2%磷酸+7%水泥+33%蒸馏水(质量比) |
水泥固化飞灰(S4) | 飞灰∶水泥∶水=3∶7∶1(即水固比为0.4,质量比) |
飞灰类型 | 制备方法 |
---|---|
螯合剂稳定化飞灰(S2) | 4%螯合剂+7%水泥+33%蒸馏水(质量比) |
磷酸稳定化飞灰(S3) | 2%磷酸+7%水泥+33%蒸馏水(质量比) |
水泥固化飞灰(S4) | 飞灰∶水泥∶水=3∶7∶1(即水固比为0.4,质量比) |
浸提剂类型 | 制备方法 | 用途 |
---|---|---|
MSW-LL | 取自生活垃圾填埋场的渗滤液收集井 | 以MSW-LL为浸提剂,模拟“垃圾渗滤液入侵”的浸沥场景 |
CSW(现用现配) | 蒸馏水水中通入纯CO2至pH稳定,pH=3.31±0.10 | 以CSW为浸提剂,模拟“碳酸化作用”浸沥场景 |
SAR(现用现配) | 参照HJ/T 299—2007配制HSO4∶HNO3=2∶1(质量比),pH=3.20±0.05 | 以SAR为浸提剂,模拟“酸雨侵蚀”浸沥场景 |
浸提剂类型 | 制备方法 | 用途 |
---|---|---|
MSW-LL | 取自生活垃圾填埋场的渗滤液收集井 | 以MSW-LL为浸提剂,模拟“垃圾渗滤液入侵”的浸沥场景 |
CSW(现用现配) | 蒸馏水水中通入纯CO2至pH稳定,pH=3.31±0.10 | 以CSW为浸提剂,模拟“碳酸化作用”浸沥场景 |
SAR(现用现配) | 参照HJ/T 299—2007配制HSO4∶HNO3=2∶1(质量比),pH=3.20±0.05 | 以SAR为浸提剂,模拟“酸雨侵蚀”浸沥场景 |
指标 | 数值 | 指标 | 数值 |
---|---|---|---|
pH | 8.11±0.06 | Mg | 59.7±1.6 |
EC | 13.40±0.44 | K | 951.8±2.8 |
ORP | -(237.3±33.2) | Pb | 0.01 |
COD | 1639.0±16.4 | Zn | 0.42±0.05 |
TOC | 626.9±4.3 | Cd | 0.01 |
NH | 3393.4±10.8 | Cr | 0.20±0.01 |
Cl | 5423.3±18.3 | Cu | 0.02 |
Ca | 20.0±1.2 | Ni | 0.01 |
Na | 589.3±2.1 |
指标 | 数值 | 指标 | 数值 |
---|---|---|---|
pH | 8.11±0.06 | Mg | 59.7±1.6 |
EC | 13.40±0.44 | K | 951.8±2.8 |
ORP | -(237.3±33.2) | Pb | 0.01 |
COD | 1639.0±16.4 | Zn | 0.42±0.05 |
TOC | 626.9±4.3 | Cd | 0.01 |
NH | 3393.4±10.8 | Cr | 0.20±0.01 |
Cl | 5423.3±18.3 | Cu | 0.02 |
Ca | 20.0±1.2 | Ni | 0.01 |
Na | 589.3±2.1 |
1 | 朱子晗, 陈卫华, 华银锋, 等. 垃圾焚烧飞灰重金属药剂稳定化研究进展[J]. 化工进展, 2021, 40(11): 6358-6368. |
ZHU Zihan, CHEN Weihua, HUA Yinfeng, et al. Research progress and consideration on medicament stabilization of heavy metals in waste incineration fly ash[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6358-6368. | |
2 | CHEN Weiming, WANG Fan, LI Zhi, et al. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process[J]. Waste Management, 2020, 114: 107-114. |
3 | 蒋旭光, 陈钱, 赵晓利, 等. 水热法稳定垃圾焚烧飞灰中重金属研究进展[J]. 化工进展, 2021, 40(8): 4473-4485. |
JIANG Xuguang, CHEN Qian, ZHAO Xiaoli, et al. A review on hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4473-4485. | |
4 | 宋倩楠, 王峰, 唐一, 等. 螯合剂稳定飞灰的条件优化及螯合产物的稳定性评价[J]. 环境工程, 2020, 38(10): 190-195. |
SONG Qiannan, WANG Feng, TANG Yi, et al. Optimization of conditions for stabilizing fly ash with chelating agents and evaluation of stability of chelating products[J]. Environmental Engineering, 2020, 38(10): 190-195. | |
5 | ZHANG Manling, GUO Mengru, ZHANG Bingru, et al. Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer[J]. Waste Management, 2020, 105: 289-298. |
6 | OGAWA N, AMANO T, NAGAI Y, et al. Water repellents for the leaching control of heavy metals in municipal solid waste incineration fly ash[J]. Waste Management, 2021, 124: 154-159. |
7 | LI Weihua, GU Kai, YU Qianwen, et al. Leaching behavior and environmental risk assessment of toxic metals in municipal solid waste incineration fly ash exposed to mature landfill leachate environment[J]. Waste Management, 2021, 120: 68-75. |
8 | SUN Xiaolei, GUO Yong, YAN Yubo, et al. Co-processing of MSWI fly ash and copper smelting wastewater and the leaching behavior of the co-processing products in landfill leachate[J]. Waste Management, 2019, 95: 628-635. |
9 | 折开浪, 李萍, 刘景财, 等. 碳酸化对不同碱度飞灰中重金属的长期影响[J]. 中国环境科学, 2022, 42(8): 3832-3840. |
SHE Kailang, LI Ping, LIU Jingcai, et al. Long-term effect of carbonation on heavy metals in fly ash of different alkalinity[J]. China Environmental Science, 2022, 42(8): 3832-3840. | |
10 | LI Weihua, YU Qianwen, GU Kai, et al. Stability evaluation of potentially toxic elements in MSWI fly ash during carbonation in view of two leaching scenarios[J]. Science of the Total Environment, 2022, 803: 150135. |
11 | 李卫华, 于倩雯, 尹俊权, 等. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J/OL].化工进展:1-13 [2023-02-01]. . |
LI Weihua, YU Qianwen, YIN Junquan, et al. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment[J/OL]. Chemical Industry and Engineering Progress: 1-13 [2023-02-01]. . | |
12 | 吴翔宇. 固化/稳定化生活垃圾焚烧飞灰中重金属镉和铅的长期稳定性研究[D]. 上海: 华东理工大学, 2020. |
WU Xiangyu. Long-term stability of Cd and Pb in solidified/stabilized municipal solid waste incineration fly ash[D]. Shanghai: East China University of Science and Technology, 2020. | |
13 | YVON J, ANTENUCCI D, JDID E A, et al. Long-term stability in landfills of municipal solid waste incineration fly ashes solidified/stabilized by hydraulic binders[J]. Journal of Geochemical Exploration, 2006, 90(1/2): 143-155. |
14 | DU Bing, LI Jiantao, FANG Wen, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution, 2019, 250: 68-78. |
15 | WANG Yitian, HU Yang, XUE Cheng, et al. Risk assessment of lead and cadmium leaching from solidified/stabilized MSWI fly ash under long-term landfill simulation test[J]. Science of the Total Environment, 2022, 816: 151555. |
16 | 固体废物浸出毒性浸出方法 硫酸硝酸法: [S]. 环境保护部, 2007. |
Solid waste-Extraction procedure for leaching toxicity—Sulphuric acid & nitric acid method: [S]. Chinese EPA, 2007. | |
17 | US EPA. Method 1320: Multiple extraction procedure, retrieved from (1986)[EB/OL]. . |
18 | 固体废物浸出毒性浸出方法 醋酸缓冲溶液法: [S]. 环境保护部, 2007. |
Solid waste—Extraction procedure for leaching toxicity—Acetic acid buffer solution method: [S]. Chinese EPA, 2007. | |
19 | US EPA. Method 1311: Toxicity characteristic leaching procedure, retrieved from (1992)[EB/OL]. . |
20 | 李卫华. 固化/稳定化飞灰中重金属溶出行为及环境风险评估研究[D]. 青岛: 青岛理工大学, 2019. |
LI Weihua. Study on the leaching behavior and environmental risk assessment of heavy metals in solidified/stabilized municipal solid waste incineration fly ash[D]. Qingdao: Qingdao University of Technology, 2019. | |
21 | LI Weihua, SUN Yingjie, HUANG Yaomin, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416. |
22 | WANG Huawei, FAN Xinxiu, Wang Yanan, et al. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid[J]. Journal of Environmental Management, 2018, 208: 15-23. |
23 | LI Weihua, SUN Yingjie, XIN Mingxue, et al. Municipal solid waste incineration fly ash exposed to carbonation and acid rain corrosion scenarios: Release behavior, environmental risk, and dissolution mechanism of toxic metals[J]. Science of the Total Environment, 2020, 744: 140857. |
24 | 何厚波, 熊杨, 周敬超. 生活垃圾填埋场渗滤液的特点及处理技术[J]. 环境卫生工程, 2002(4): 159-163. |
HE Houbo, XIONG Yang, ZHOU Jingchao. The characteristic and treatment technology of municipal solid waste landfill leachate[J]. Environmental Sanitation Engineering, 2002(4): 159-163. | |
25 | Huangming LO, LIAO Yuanlung. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites[J]. Journal of Hazardous Materials, 2007, 142(1/2): 512-519. |
26 | 方芳, 刘国强, 郭劲松, 等. 垃圾渗滤液中溶解性有机质研究进展[J]. 水处理技术, 2009, 35(4): 4-8. |
FANG Fang, LIU Guoqiang, GUO Jinsong, et al. Research progress of dissolved organic matter in landfill leachate[J]. Technology of Water Treatment, 2009, 35(4): 4-8. | |
27 | LI Jiangshan, XUE Qiang, WANG Ping, et al. Evaluation of leaching characteristics of heavy metals from municipal solid waste incineration fly ash by up-flow percolation column tests[J]. Environmental Earth Sciences, 2016, 75(8): 1-10. |
28 | KOMONWEERAKET K, CETIN B, BENSON C H, et al. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH[J]. Waste Management, 2015, 38: 174-184. |
29 | ALAHRACHE S, WINNEFELD F, CHAMPENOIS J B, et al. Chemical activation of hybrid binders based on siliceous fly ash and Portland cement[J]. Cement and Concrete Composites, 2016, 66: 10-23. |
30 | FERRARO A, FARINA I, RACE M, et al. Pre-treatments of MSWI fly-ashes: A comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 453-471. |
31 | SALDANHA R B, REDDY K R, CONSOLI N C. Influence of sodium chloride on leaching behavior of fly ash stabilized with carbide lime[J]. Construction and Building Materials, 2019, 227: 116571. |
32 | DU Bing, LI Jiantao, FANG Wen, et al. Characterization of naturally aged cement-solidified MSWI fly ash[J]. Waste Management, 2018, 80: 101-111. |
33 | QUINA M J, BORDADO J C M, QUINTA-FERREIRA R M. Stabilisation/solidification of APC residues from MSW incineration with hydraulic binders and chemical additives[J]. Journal of Hazardous Materials, 2014, 264(2): 107-116. |
34 | QUINA M J, BORDADO J C M, QUINTA-FERREIRA R M. Chemical stabilization of air pollution control residues from municipal solid waste incineration[J]. Journal of Hazardous Materials, 2010, 179: 382-392. |
35 | VAVVA C, VOUTSAS E, MAGOULAS K. Process development for chemical stabilization of fly ash from municipal solid waste incineration[J]. Chemical Engineering Research and Design, 2017, 125: 57-71. |
36 | QUINA M J, BORDADO J C, QUINTA-FERREIRA R M. Treatment and use of air pollution control residues from MSW incineration: an overview[J]. Waste Management, 2008, 28: 2097-2121. |
37 | IBRAHIM L A A. Chemical characterization and mobility of metal species in fly ash-water system[J]. Water Science, 2015, 29(2): 109-122. |
38 | JANG J G, LEE H K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement[J]. Cement and Concrete Research, 2016, 82: 50-57. |
39 | SANTOS R M, MERTENS G, SALMAN M, et al. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching[J]. Journal of Environmental Management, 2013, 128, 807-821. |
40 | ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. |
41 | BACIOCCHI R, COSTA G, BARTOLOMEO E D, et al. The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues[J]. Waste Management, 2009, 29: 2994-3003. |
42 | CAPPAI G, CARA S, MUNTONI A, et al. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration[J]. Journal of Hazardous Materials, 2012, 207: 159-164. |
43 | 杨延梅, 慕宗宇, 王菲, 等. 螯合剂固化生活垃圾焚烧飞灰中重金属的机理研究进展[J]. 环境科学研究, 2022, 35(10): 2388-2395. |
YANG Yanmei, MU Zongyu, WANG Fei, et al. Review on mechanisms of chelating agents to solidify heavy metals in municipal solid waste incineration fly ash[J]. Research of Environmental Sciences, 2022, 35(10): 2388-2395. |
[1] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[2] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
[3] | HE Minyu, LIU Weizao, LIU Qingcai, QIN Zhifeng. Research progress in CO2 mineral sequestration technology [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825-1833. |
[4] | ZHENG Peng, LI Weiling, GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538. |
[5] | YANG Yongbin, DONG Yinrui, ZHONG Qiang, LI Qian, WANG Lin, JIANG Tao. Application and research progress of carbonization consolidation of high temperature coal tar pitch binder in formed carbon material [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6419-6429. |
[6] | FU Chenglin, WU Yonggang, HU Qian, CHENG Yuhu. Operation characteristics of MEC load with two different electrode materials for actual landfill leachate treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 402-410. |
[7] | XU Shichang, CUI Lanying, XIE Lixin, SU Libo. Evaporation and vapor absorption coupling method for landfill leachate treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2852-2858. |
[8] | WANG Zhonghui, SU Sheng, YIN Zijun, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress of CO2 mineralization and integrated absorption-mineralization (IAM) method [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2318-2327. |
[9] | Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. |
[10] | Jun XIA, Yidi CAI, Junfeng ZHANG, Yan HUANG. Study of constitutes of volatile organic compounds resulting from high exhaust gas temperature evaporation of landfill leachate membrane concentrate [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2845-2490. |
[11] | ZHOU Hui, ZHENG Jun, HU Dawei, ZHANG Chuanqing, LU Jingjing, GAO Yang. Effect of CO2 erosion on the pore structure of cement-based materials in water soaking and moist environment [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4791-4798. |
[12] | SHI Tian, CHEN Jian, DUAN Lunbo, ZHAO Changsui. CO2 capture performance of self-activated Ca/Cu composites prepared by solution combustion synthesis [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3086-3091. |
[13] | TIAN Wanjun, HAN Lei, SHI Zhenglun. Performance study of precipitated nano-silica from acid leaching residue of coal ash by carbonation method [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 984-991. |
[14] | HE Lanlan,YU Dunxi,ZENG Xianpeng,Lü Weizhi,WU Jianqun,XU Minghou. Investigation on calcination and carbonation performance of papermaking lime mud [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 3095-3100. |
[15] | ZHANG Bingbing1,WANG Huiming1,ZENG Shanghong2,SU Haiquan1,2. Current status and outlook of carbon dioxide mineral carbonation technologies [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 2075-2083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |