Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (11): 5722-5729.DOI: 10.16085/j.issn.1000-6613.2023-0011
• Industrial catalysis • Previous Articles Next Articles
YU Xinyao(), GAO Liang, ZONG Baoning()
Received:
2023-01-05
Revised:
2023-03-01
Online:
2023-12-15
Published:
2023-11-20
Contact:
ZONG Baoning
通讯作者:
宗保宁
作者简介:
于昕瑶(1996—),女,博士研究生,研究方向为基本有机化学品绿色生产技术化学和工程基础。E-mail:yuxinyao.ripp@sinopec.com。
基金资助:
CLC Number:
YU Xinyao, GAO Liang, ZONG Baoning. Progress in improving the stability of Cu-based catalysts for C-O bond hydrogenation[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5722-5729.
于昕瑶, 郜亮, 宗保宁. 提高碳氧键加氢铜基催化剂稳定性的研究进展[J]. 化工进展, 2023, 42(11): 5722-5729.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0011
1 | VAN DEN BERG R, PARMENTIER T E, ELKJÆR C F, et al. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts[J]. ACS Catalysis, 2015, 5(7): 4439-4448. |
2 | RUCKENSTEIN E, PULVERMACHER B. Growth kinetics and the size distributions of supported metal crystallites[J]. Journal of Catalysis, 1973, 29(2): 224-245. |
3 | LIFSHITZ I M, SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1/2): 35-50. |
4 | AMANN P, KLÖTZER B, DEGERMAN D, et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst[J]. Science, 2022, 376(6593): 603-608. |
5 | SHYAM K, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. |
6 | SEBASTIAN K, MAX T, HANNE F, et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science, 2016, 352(6288): 969-974. |
7 | MALTE B, FELIX S, IGOR K, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
8 | SHAO Yuewen, WANG Junzhe, DU Huining, et al. Importance of magnesium in Cu-based catalysts for selective conversion of biomass-derived furan compounds to diols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5217-5228. |
9 | TOYIR J, DE LA PISCINA P R, FIERRO J L G, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter[J]. Applied Catalysis B: Environmental, 2001, 29(3): 207-215. |
10 | LIU Xianyun, TOYIR J, DE LA PISCINA P R, et al. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13704-13711. |
11 | 彭桂芳. Ba改性铜基复合氧化物的制备与三效催化性能的研究[D]. 汕头: 汕头大学, 2010. |
PENG Guifang. Preparation and investigation on three-way catalytic properties of copper base composite oxide of Ba[D]. Shantou: Shantou University, 2010. | |
12 | BANSODE A, TIDONA B, VON ROHR P R, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catalysis Science & Technology, 2013, 3(3): 767-778. |
13 | ZHANG Hui, ZHANG Guoyan, BI Xue, et al. Facile assembly of a hierarchical core@shell Fe3O4@CuMgAl-LDH (layered double hydroxide) magnetic nanocatalyst for the hydroxylation of phenol[J]. Journal of Materials Chemistry A, 2013, 1(19): 5934-5942. |
14 | SHI Zhisheng, TAN Qingqing, TIAN Chao, et al. CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature[J]. Journal of Catalysis, 2019. 379: 78-89. |
15 | SHI Zhisheng, TAN Qingqing, WU Dongfang, et al. A novel core-shell structured CuIn@SiO2 catalyst for CO2 hydrogenation to methanol[J]. AIChE Journal, 2019, 65(3): 1047-1058. |
16 | 高琪. 碱性助剂对铜基催化剂结构及CO2加氢合成甲醇催化活性的影响[D]. 银川: 宁夏大学, 2019. |
GAO Qi. Effect of alkaline promoter on the structure of copper-based catalysts and the activity of CO2 hydrogenation to methanol[D]. Yinchuan: Ningxia University, 2019. | |
17 | SŁOCZYŃSKI J, GRABOWSKI R, OLSZEWSKI P, et al. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2 [J]. Applied Catalysis A: General, 2006, 310: 127-137. |
18 | REN Hong, XU Chenghua, ZHAO Haoyang, et al. Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 261-267. |
19 | BRANDS D S, POELS E K, BLIEK A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Applied Catalysis A: General, 1999, 184(2): 279-289. |
20 | 王爱丽,贾星原,卢志鹏,等. 稀土元素(La,Ce,Nd)改性Cu/SiO2催化甲醇脱氢制备甲酸甲酯[J]. 精细石油化工, 2019, 36(1): 20-25. |
WANG Aili, JIA Xingyuan, LU Zhipeng, et al. Methanol dehydrogenation to methyl formate catalyzed by rare earth element (La,Ce,Nd) modified Cu/SiO2 catalysts[J]. Speciality Petrochemicals, 2019, 36(1): 20-25. | |
21 | VENUGOPAL A, PALGUNADI J, DEOG Jung Kwang, et al. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier[J]. Journal of Molecular Catalysis A: Chemical, 2009, 302(1/2): 20-27. |
22 | ZHENG Xinlei, LIN Haiqiang, ZHENG Jianwei, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catalysis, 2013, 3(12): 2738-2749. |
23 | ZHANG X G, WILSON K, LEE A F. Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368. |
24 | SONG Xiwen, YANG Chengsheng, LI Xianghong, et al. On the role of hydroxyl groups on Cu/Al2O3 in CO2 Hydrogenation[J]. ACS Catalysis, 2022, 12(22): 14162-14172. |
25 | HU Jun, LI Yangyang, ZHEN Yanping, et al. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chinese Journal of Catalysis, 2021, 42(3): 367-375. |
26 | ZHANG Fan, LIU Yuan, XU Xiaoying, et al. Effect of Al-containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production[J]. Fuel Processing Technology, 2018, 178: 148-155. |
27 | 刘艳霞,王丽丽,王琪,等. γ-Al2O3对铜基甲醇合成催化剂的促进作用[J]. 厦门大学学报(自然科学版), 2007, 46(5): 661-664. |
LIU Yanxia, WANG Lili, WANG Qi, et al. The promoting effect of γ-Al2O3 on copper-based catalysts for methanol synthesis[J]. Journal of Xiamen University (Natural Science). 2007, 46(5): 661-664. | |
28 | LI Fengjiao, WANG Liguo, HAN Xiao, et al. Influence of support on the performance of copper catalysts for the effective hydrogenation of ethylene carbonate to synthesize ethylene glycol and methanol[J]. RSC Advances, 2016, 6(51): 45894-45906. |
29 | YIN Anyuan, GUO Xiuying, DAI Weilin, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+ [J]. The Journal of Physical Chemistry C, 2009, 113(25): 11003-11013. |
30 | WANG Shurong, GUO Wenwen, WANG Haixia, et al. Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production[J]. New Journal of Chemistry, 2014, 38(7): 2792-2800. |
31 | CHEN Liangfeng, GUO Pingjun, QIAO Minghua, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
32 | CHEN Liangfeng, GUO Pingjun, ZHU Lingjun, et al. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol[J]. Applied Catalysis A: General, 2009, 356(2): 129-136. |
33 | ZHU Yifeng, ZHU Yulei, DING Guoqiang, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support[J]. Applied Catalysis A: General, 2013, 468: 296-304. |
34 | ANGELO L, KOBL K, TEJADA L M M, et al. Study of CuZnMO x oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Comptes Rendus Chimie, 2015, 18(3): 250-260. |
35 | ARENA F, ITALIANO G, BARBERA K, et al. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Applied Catalysis A: General, 2008, 350(1): 16-23. |
36 | ARENA F, BARBERA K, ITALIANO G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. Journal of Catalysis, 2007, 249(2): 185-194. |
37 | WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chemical Engineering Journal, 2016, 293: 327-336. |
38 | SAMSON K, ŚLIWA M, SOCHA R P, et al. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2 [J]. ACS Catalysis, 2014, 4(10): 3730-3741. |
39 | LI Kongzhai, CHEN Jingguang. CO2 hydrogenation to methanol over ZrO2 containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catalysis, 2019, 9(9): 7840-7861. |
40 | ZHU Jiadong, SU Yaqiong, CHAI Jiachun, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544. |
41 | WANG Weiwei, QU Zhenping, SONG Lixin, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30. |
42 | YU Wenzhu, WANG Weiei, LI Shanqing, et al. Construction of active site in a sintered copper-ceria nanorod catalyst[J]. Journal of the American Chemical Society, 2019, 141(44): 17548-17557. |
43 | LI Shuirong, GONG Jinlong. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chemical Society Reviews, 2014, 43(21): 7245-7256. |
44 | YANG Haiyan, GAO Peng, ZHANG Chen, et al. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catalysis Communications, 2016, 84: 56-60. |
45 | AI P P, TAN M H, ISHIKURO Y, et al. Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate[J]. ChemCatChem, 2017, 9(6): 1067-1075. |
46 | YUE Hairong, ZHAO Yujun, ZHAO Shuo, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nature Communications, 2013, 4(1): 1-7. |
47 | CHEN S, DE SOUZA P M, CIOTONEA C, et al. Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol[J]. Applied Catalysis A: General, 2022, 633(5): 118527. |
48 | YUAN Zhenle, WANG Lina, WANG Junhua, et al. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 431-440. |
49 | YU X B, VEST T A, GLEASON-BOURE N, et al. Enhanced hydrogenation of dimethyl oxalate to ethylene glycol over indium promoted Cu/SiO2 [J]. Journal of Catalysis, 2019, 380: 289-296. |
50 | REN Yingyu, YANG Yusen, CHEN Lifang, et al. Synergetic effect of Cu0-Cu+ derived from layered double hydroxides toward catalytic transfer hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2022, 314: 121515. |
51 | ZHANG Fan, XU Xiaoying, QIU Zhengpu, et al. Improved methanol synthesis performance of Cu/ZnO/Al2O3 catalyst by controlling its precursor structure[J]. Green Energy & Environment, 2022, 7(4): 772-781. |
52 | BEHRENS M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. Journal of Catalysis, 2009, 267(1): 24-29. |
53 | HOU Xiaoning, QING Shaojun, LIU Yajie, et al. Cu1- x Mg x Al3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming[J]. Fuel, 2021, 284: 119041. |
54 | BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, et al. Cu-Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction[J]. ACS Catalysis, 2019, 9(7): 6243-6251. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |