Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5135-5146.DOI: 10.16085/j.issn.1000-6613.2022-2091
• Energy processes and technology • Previous Articles Next Articles
HAN Li1,2(), LI Wangliang1,2, LI Yanxiang1,2(), AN Gaojun3(), LU Changbo3
Received:
2022-11-09
Revised:
2023-01-09
Online:
2023-11-11
Published:
2023-10-15
Contact:
LI Yanxiang, AN Gaojun
韩丽1,2(), 李望良1,2, 李艳香1,2(), 安高军3(), 鲁长波3
通讯作者:
李艳香,安高军
作者简介:
韩丽(1999—),女,硕士研究生,研究方向为可编织钙钛矿太阳能电池的制备。E-mail: hanli211@ipe.ac.cn。
基金资助:
CLC Number:
HAN Li, LI Wangliang, LI Yanxiang, AN Gaojun, LU Changbo. Research progress of fibrous perovskite solar cells[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5135-5146.
韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2091
方法 | PSC结构 | 性能 | 特点 | 文献 |
---|---|---|---|---|
电加热辅助多重涂层(EMC) | Ti/TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Au | VOC=0.903V JSC=12.7mA/cm2 FF=65.4% PCE=7.5% | ✔连续沉积有效提高了覆盖率 ✔水平涂层、轴向旋转和多重涂层提升了成膜的均匀性 ✔电加热改善了薄膜形态 钙钛矿膜层存在空位和针孔 | [ |
阴极沉积溶液(浸涂) | Ti/TiO2/CH3NH3PbI3/CNT | VOC=0.85V JSC=14.5mA/cm2 FF=56% PCE=7.1% | ✔CNT可同时作为电极和HTL ✔扭转400次循环后PCE可保持在90%以上CNT片在扭曲后在钙钛矿晶体上粘附得更强 取向CNT制备工艺复杂 | [ |
气相辅助沉积 | Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | VOC=0.95V JSC=15.14mA/cm2 FF=75% PCE=10.79% | ✔获得高质量的钙钛矿膜层 ✔重复性好 Au电极昂贵,大规模困难 | [ |
静电纺丝 | 棉线-Ag/P3HT/m-TiO2/CH3NH3PbI3- PVP/SnO2-PCBM/CF | VOC=1.92V JSC=11.94mA/cm2 FF=54.2% PCE=15.7% | ✔PCE大幅度提升,目前制备的器件为纤维PSC效率最高值 ✔有望实现大批量生产 棉纱线受织造摩擦影响严重 | [ |
方法 | PSC结构 | 性能 | 特点 | 文献 |
---|---|---|---|---|
电加热辅助多重涂层(EMC) | Ti/TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Au | VOC=0.903V JSC=12.7mA/cm2 FF=65.4% PCE=7.5% | ✔连续沉积有效提高了覆盖率 ✔水平涂层、轴向旋转和多重涂层提升了成膜的均匀性 ✔电加热改善了薄膜形态 钙钛矿膜层存在空位和针孔 | [ |
阴极沉积溶液(浸涂) | Ti/TiO2/CH3NH3PbI3/CNT | VOC=0.85V JSC=14.5mA/cm2 FF=56% PCE=7.1% | ✔CNT可同时作为电极和HTL ✔扭转400次循环后PCE可保持在90%以上CNT片在扭曲后在钙钛矿晶体上粘附得更强 取向CNT制备工艺复杂 | [ |
气相辅助沉积 | Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | VOC=0.95V JSC=15.14mA/cm2 FF=75% PCE=10.79% | ✔获得高质量的钙钛矿膜层 ✔重复性好 Au电极昂贵,大规模困难 | [ |
静电纺丝 | 棉线-Ag/P3HT/m-TiO2/CH3NH3PbI3- PVP/SnO2-PCBM/CF | VOC=1.92V JSC=11.94mA/cm2 FF=54.2% PCE=15.7% | ✔PCE大幅度提升,目前制备的器件为纤维PSC效率最高值 ✔有望实现大批量生产 棉纱线受织造摩擦影响严重 | [ |
PSC功能层结构(从内到外) | VOC/V | JSC/mA·cm-2 | FF/% | PCE/% | 三维结构 | 文献 |
---|---|---|---|---|---|---|
不锈钢丝/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/CNT | 0.664 | 10.2 | 48.7 | 3.3 | [ | |
CNT/c-TiO2/m-TiO2/CH3NH3PbI3/ P3HT-SWNT/Ag NWs | 0.615 | 8.75 | 56.4 | 3.03 | [ | |
不锈钢丝/ZnO/CH3NH3PbI3/ Spiro-OMeTAD/CNT | 0.8 | 7.52 | 43 | 3.8 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Ag NWs | 0.731 | 11.97 | 44 | 3.85 | [ | |
Ti/TiO2/CH3NH3Pb3-x Cl x /Spiro-OMeTAD/CNT | 0.76 | 15.99 | 44.44 | 5.01 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | 0.713 | 12.32 | 60.9 | 5.35 | [ | |
Ti/TiO2/CH3NH3PbI3/CNT | 0.85 | 14.5 | 56 | 7.1 | [ | |
PEN/ITO/TiO2/CH3NH3PbI3/CNT | 0.91 | 15.9 | 65.6 | 9.49 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Au | 0.87 | 14.18 | 61 | 7.53 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | 0.95 | 15.14 | 75 | 10.79 | [ | |
棉线-Ag/P3HT/m-TiO2/CH3NH3PbI3-PVP/ SnO2-PCBM/CF | 1.92 | 11.94 | 54.2 | 15.7 | [ |
PSC功能层结构(从内到外) | VOC/V | JSC/mA·cm-2 | FF/% | PCE/% | 三维结构 | 文献 |
---|---|---|---|---|---|---|
不锈钢丝/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/CNT | 0.664 | 10.2 | 48.7 | 3.3 | [ | |
CNT/c-TiO2/m-TiO2/CH3NH3PbI3/ P3HT-SWNT/Ag NWs | 0.615 | 8.75 | 56.4 | 3.03 | [ | |
不锈钢丝/ZnO/CH3NH3PbI3/ Spiro-OMeTAD/CNT | 0.8 | 7.52 | 43 | 3.8 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Ag NWs | 0.731 | 11.97 | 44 | 3.85 | [ | |
Ti/TiO2/CH3NH3Pb3-x Cl x /Spiro-OMeTAD/CNT | 0.76 | 15.99 | 44.44 | 5.01 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | 0.713 | 12.32 | 60.9 | 5.35 | [ | |
Ti/TiO2/CH3NH3PbI3/CNT | 0.85 | 14.5 | 56 | 7.1 | [ | |
PEN/ITO/TiO2/CH3NH3PbI3/CNT | 0.91 | 15.9 | 65.6 | 9.49 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3PbI3/ Spiro-OMeTAD/Au | 0.87 | 14.18 | 61 | 7.53 | [ | |
Ti/c-TiO2/m-TiO2/CH3NH3Pb3-x Cl x / Spiro-OMeTAD/Au | 0.95 | 15.14 | 75 | 10.79 | [ | |
棉线-Ag/P3HT/m-TiO2/CH3NH3PbI3-PVP/ SnO2-PCBM/CF | 1.92 | 11.94 | 54.2 | 15.7 | [ |
1 | World Energy Transitions Outlook 2022: 1.5℃ Pathway[R]. Abu Dhabi: International Renewable Energy Agency, 2022. |
2 | KABIR Ehsanul, KUMAR Pawan, KUMAR Sandeep, et al. Solar energy: Potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900. |
3 | PENG Ming, ZOU Dechun. Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs[J]. Journal of Materials Chemistry A, 2015, 3(41): 20435-20458. |
4 | VARMA Sreekanth J, KOWSIK Sambath Kumar, SUDIPTA Seal, et al. Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications[J]. Advanced Science, 2018, 5(9): 1800340. |
5 | FAN X, CHU Z Z, WANG F Z, et al. Wire-shaped flexible dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(3): 592-595. |
6 | ZHANG Junxiang, WANG Zhuanpei, LI Xuelian, et al. Flexible platinum-free fiber-shaped dye sensitized solar cell with 10.28% efficiency[J]. ACS Applied Energy Materials, 2019, 2(4): 2870-2877. |
7 | SAVAGATRUP Suchol, PRINTZ Adam D, O’CONNOR Timothy F, et al. Mechanical degradation and stability of organic solar cells: Molecular and microstructural determinants[J]. Energy & Environmental Science, 2015, 8(1): 55-80. |
8 | LEE Michael R, ECKERT Robert D, KAREN Forberich, et al. Solar power wires based on organic photovoltaic materials[J]. Science, 2009, 324(5924): 232-235. |
9 | AKIHIRO Kojima, KENJIRO Teshima, YASUO Shirai, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
10 | Best research-cell efficiency chart [EB/OL]. NREL gov., 2022. (2022-07-12)[2022-11-09]. . |
11 | QIU Longbin, DENG Jue, LU Xin, et al. Integrating perovskite solar cells into a flexible fiber[J]. Angewandte Chemie International Edition, 2014, 53(39): 10425-10428. |
12 | LEE Minoh, Yohan KO, Yongseok JUN. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode[J]. Journal of Materials Chemistry A, 2015, 3(38): 19310-19313. |
13 | HE Sisi, QIU Longbin, FANG Xin, et al. Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process[J]. Journal of Materials Chemistry A, 2015, 3(18): 9406-9410. |
14 | LI Ru, XIANG Xi, TONG Xiao, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835. |
15 | DENG Jue, QIU Longbin, LU Xin, et al. Elastic perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(42): 21070-21076. |
16 | HU Hsienwei, YAN Kai, PENG Ming, et al. Fiber-shaped perovskite solar cells with 5.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(10): 3901-3906. |
17 | QIU Longbin, HE Sisi, YANG Jiahua, et al. Fiber-shaped perovskite solar cells with high power conversion efficiency[J]. Small, 2016, 12(18): 2419-2424. |
18 | QIU Longbin, HE Sisi, YANG Jiahua, et al. An all-solid-state fiber-type solar cell achieving 9.49% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10105-10109. |
19 | HU Hsienwei, DONG Bin, CHEN Buxin, et al. High performance fiber-shaped perovskite solar cells based on lead acetate precursor[J]. Sustainable Energy & Fuels, 2018, 2(1): 79-84. |
20 | DONG Bin, HU Jing, XIAO Xinyu, et al. High-efficiency fiber-shaped perovskite solar cell by vapor-assisted deposition with a record efficiency of 10.79%[J]. Advanced Materials Technologies, 2019, 4(7): 1900131. |
21 | LI Qian, BALILONDA Andrew, Aizaz ALI, et al. Flexible solar yarns with 15.7% power conversion efficiency, based on electrospun perovskite composite nanofibers[J]. Solar RRL, 2020, 4(9): 2000269. |
22 | WALI Qamar, IFTIKHAR Faiza Jan, ELUMALAI Naveen Kumar, et al. Advances in stable and flexible perovskite solar cells[J]. Current Applied Physics, 2020, 20(5): 720-737. |
23 | DI GIACOMO Francesco, FAKHARUDDIN Azhar, JOSE Rajan, et al. Progress, challenges and perspectives in flexible perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(10): 3007-3035. |
24 | KANG Minji, KIM Tae-Wook. Recent advances in fiber-shaped electronic devices for wearable applications[J]. Applied Sciences, 2021, 11(13): 6131. |
25 | ZHOU Yang, FANG Jian, ZHAO Yan, et al. Handbook of fibrous materials[M]. Hoboken: Wiley. 2020: 557-591. |
26 | CHEN Buxin, CHEN Si, DONG Bin, et al. Electrical heating‐assisted multiple coating method for fabrication of high‐performance perovskite fiber solar cells by thickness control[J]. Adv. Mater. Interfaces, 2017, 4(23): 1700833. |
27 | LIU Dianyi, YANG Jinli, KELLY Timothy L. Compact layer free perovskite solar cells with 13.5% efficiency[J]. Journal of the American Chemical Society, 2014, 136(49): 17116-17122. |
28 | BALILONDA Andrew, LI Ziqi, FU Yuequn, et al. Perovskite fiber-shaped optoelectronic devices for wearable applications[J]. Journal of Materials Chemistry C, 2022, 10(18): 6957-6991. |
29 | WALI Qamar, IFTIKHAR Faiza Jan, KHAN Muhammad Ejaz, et al. Advances in stability of perovskite solar cells[J]. Organic Electronics, 2020, 78: 105590. |
30 | 张智涛, 张晔, 李一明, 等. 新型纤维状能源器件的发展和思考[J]. 高分子学报, 2016(10): 1284-1299. |
ZHANG Zhitao, ZHANG Ye, LI Yiming, et al. The advancement of fiber-shaped energy harvesting and storage devices[J]. Acta Polymerica Sinica, 2016(10): 1284-1299. | |
31 | QING Jian, CHANDRAN Hrisheekesh-Thachoth, XUE Hongtao, et al. Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature[J]. Organic Electronics, 2015, 27: 12-17. |
32 | WANG Lie, FU Xuemei, HE Jiqing, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1901971. |
33 | KIM Kyungkon, LIU Jiwen, NAMBOOTHIRY Manoj A G, et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics[J]. Applied Physics Letters, 2007, 90(16): 163511. |
34 | LIU Dianyi, ZHAO Mingyan, LI Yan, et al. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes[J]. ACS Nano, 2012, 6(12): 11027-11034. |
35 | CHEN Tao, QIU Longbin, LI Houpu, et al. Polymer photovoltaic wires based on aligned carbon nanotube fibers[J]. Journal of Materials Chemistry, 2012, 22(44): 23655-23658. |
36 | ZHANG Zhitao, YANG Zhibin, WU Zhongwei, et al. Weaving efficient polymer solar cell wires into flexible power textiles[J]. Advanced Energy Materials, 2014, 4(11): 1301750. |
37 | ZHANG Ye, WANG Yuhang, WANG Lie, et al. A fiber-shaped aqueous lithium ion battery with high power density[J]. Journal of Materials Chemistry A, 2016, 4(23): 9002-9008. |
38 | WANG Lie, WANG Liyuan, ZHANG Ye, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring[J]. Advanced Functional Materials, 2018, 28(42): 1804456. |
39 | HARDY Dorothy, MONETA Andrea, SAKALYTE Viktorija, et al. Engineering a costume for performance using illuminated LED-yarns[J]. Fibers, 2018, 6(2): 35. |
40 | O’CONNOR B, AN K H, ZHAO Y, et al. Fiber shaped light emitting device[J]. Advanced Materials, 2007, 19(22): 3897-3900. |
41 | ZHANG Zhitao, GUO Kunping, LI Yiming, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell[J]. Nature Photonics, 2015, 9(4): 233-238. |
42 | CHERENACK Kunigunde, ZYSSET Christoph, KINKELDEI Thomas, et al. Woven electronic fibers with sensing and display functions for smart textiles[J]. Advanced Materials, 2010, 22(45): 5178-5182. |
43 | LIU Peng, GAO Zhen, XU Limin, et al. Polymer solar cell textiles with interlaced cathode and anode fibers[J]. Journal of Materials Chemistry A, 2018, 6(41): 19947-19953. |
44 | HUANG Yan, WING Shan Ip, YUEN Ying Lau, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11(9): 8953-8961. |
45 | LOCHER Ivo, TROSTER Gerhard. Fundamental building blocks for circuits on textiles[J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 541-550. |
46 | LI Qiao, TAO Xiaoming. A stretchable knitted interconnect for three-dimensional curvilinear surfaces[J]. Textile Research Journal, 2011, 81(11): 1171-1182. |
47 | Jung Sim ROH. All-fabric interconnection and one-stop production process for electronic textile sensors[J]. Textile Research Journal, 2017, 87(12): 1445-1456. |
48 | HANBIT Jin, NAOJI Matsuhisa, SUNGWON Lee, et al. Enhancing the performance of stretchable conductors for E-textiles by controlled ink permeation[J]. Advanced Materials, 2017, 29(21): 1605848. |
49 | DE MULATIER Séverine, NASRELDIN Mohamed, DELATTRE Roger, et al. Electronic circuits integration in textiles for data processing in wearable technologies[J]. Advanced Materials Technologies, 2018, 3(10): 1700320. |
50 | AGCAYAZI Talha, CHATTERJEE Kony, BOZKURT Alper, et al. Flexible interconnects for electronic textiles[J]. Advanced Materials Technologies, 2018, 3(10): 1700277. |
51 | DHAWAN Anuj, SEYAM Abdelfattah M, GHOSH Tushar K, et al. Woven fabric-based electrical circuits[J]. Textile Research Journal, 2004, 74(10): 913-919. |
52 | POST E R, ORTH M, RUSSO P R, et al. E-broidery: Design and fabrication of textile-based computing[J]. IBM Systems Journal, 39(3.4): 840-860. |
53 | LINZ T, KALLMAYER C, ASCHENBRENNER R, et al. Wearable computers[C]//Proc., Ninth IEEE Int. Symp. Osaka, Japan, 2005. |
54 | NECHYPORCHUK Oleksandr, YU Junchun, NIERSTRASZ Vincent A, et al. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in E-textile manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4793-4801. |
55 | MAO Yun, ZHU Meifang, WANG Wei, et al. Well-defined silver conductive pattern fabricated on polyester fabric by screen printing a dopamine surface modifier followed by electroless plating[J]. Soft Matter, 2018, 14(7): 1260-1269. |
56 | LI Mingzhuan, LI Zhanyu, WANG Jun, et al. Screen printed silver patterns on functionalised aramid fabric[J]. Fibers and Polymers, 2017, 18(10): 1975-1980. |
57 | ZYSSET C, CHERENAVK K, KINKELDEI T, et al. Wearable Computers (ISWC) 2010[C]. Int. Symp. Seoul, South Korea, 2010. |
58 | LOCHER I, KIRSTEIN T, TRÖSTER G. Microelectronics (IMAPS) [C]//Proc. of 37th Int. Symp. Long Beach, CA, USA, 2004. |
59 | Irfan MIR, KUMAR D. Recent advances in isotropic conductive adhesives for electronics packaging applications[J]. International Journal of Adhesion and Adhesives, 2008, 28(7): 362-371. |
[1] | LIU Cheng,SHEN Luying,XU Zhengyu,WANG Ran,ZHAO Gaochao,SHI Gaoyang,DAI Xiaoyan,SHI Chengwu. Progress of perovskite solar cells [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3246-3252. |
[2] | YANG Dingzhu1,CHEN Aizheng1,2,WANG Shibin1,2. Research progress of preparation of tissue engineering scaffolds by phase inversion using supercritical carbon dioxide [J]. Chemical Industry and Engineering Progree, 2014, 33(03): 696-702. |
[3] | LIU Shuqiong,XIAO Xiufeng,LIU Rongfang,ZHONG Zhangyu,JIAO Jianjin. Fabrication of polycaprolactone nanofibrous scaffolds by thermally induced phase separation [J]. Chemical Industry and Engineering Progree, 2011, 30(5): 1059-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |