Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (S1): 177-189.DOI: 10.16085/j.issn.1000-6613.2022-1148
• Industrial catalysis • Previous Articles Next Articles
ZHANG Guangyu(), ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei
Received:
2022-06-20
Revised:
2022-07-29
Online:
2022-11-10
Published:
2022-10-20
Contact:
ZHANG Guangyu
通讯作者:
张广宇
作者简介:
张广宇(1990—),男,博士,研究方向为反应工艺。E-mail:zhanggy.qday@sinopec.com。
基金资助:
CLC Number:
ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189.
张广宇, 赵健, 孙峰, 姜杰, 孙冰, 徐伟. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1148
1 | 邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. | |
2 | FIGUERES C, QUERE C, MAHINDRA A, et al. Emissions are still rising ramp up the cuts[J]. Nature, 2018, 564(7734): 27-30. |
3 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
LIU Changjun, GUO Qiuting, YE Jingyun, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
4 | 徐永辉, 肖宝华, 冯艳艳, 等. 二氧化碳捕集材料的研究进展[J]. 精细化工, 2020, 38(8): 1513-1521. |
XU Yonghui, XIAO Baohua, FENG Yanyan, et al. Research progress of carbon dioxide capture materials[J]. Fine Chemicals, 2020, 38(8): 1513-1521. | |
5 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
6 | ATSBHA T, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons[J]. Journal of CO2 Utilization, 2021, 44: 101413. |
7 | LIU X, SHEN X, LI H, et al. Ethylene carbon-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, 11(19): 2003905. |
8 | GE J, LI F, GAO Y, et al. A high-performance structural material based on maize straws and its biodegradable composites of poly (propylene carbonate)[J]. Cellulose, 2021, 28(18): 11381-11395. |
9 | KAMPHUIS A, PICCHIONI F, PESCARMONA P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications[J]. Green Chemistry, 2019, 21(3): 406-448. |
10 | KUMAR P, SRIVASTAVA V, MISHRA I. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy & Fuels, 2015, 29(4): 2664-2675. |
11 | SCHAFFNER B, SCHAFFNER F, VEREVKIN S, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chemical Reviews, 2010, 110(8): 4554-4581. |
12 | 王公应, 刘绍英, 陈彤, 等. 碳酸酯绿色合成技术研究进展[J]. 精细化工, 2013, 30(4): 420-424. |
WANG Gongying, LIU Shaoying, CHEN Tong, et al. Progress in the green synthesis technology of carbonate[J]. Fine Chemicals, 2013, 30(4): 420-424. | |
13 | SHUKLA K, SRIVASTVA V. Synthesis of organic carbonates from alcoholysis of urea: a review[J]. Catalysis Reviews, 2017, 59(1): 1-43. |
14 | TOMISISHIGE H, YASUDA H, YOSHIDA Y, et al. Novel route to propylene carbonate selective synthesis from propylene glycol and carbon dioxide[J]. Catalysis Letters, 2004, 95(1/2): 45-49. |
15 | ZHOU X, YANG X, CHEN T, et al. Synthesis of propylene carbonate from carbon dioxide and O-chloropropanol[J]. Chinese Journal of Catalysis, 2009, 30(1): 7-8. |
16 | KHATIB S, OYAMA S. Direct oxidation of propylene to propylene oxide with molecular oxygen: a review[J]. Catalysis Reviews, 2015, 57(3): 306-344. |
17 | ADELEYE A, PATEL D, NIYOGI D, et al. Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18647-18657. |
18 | PESCARMONA P, TAHERIMEHR M. Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2 [J]. Catalysis Science & Technology, 2012, 2(11): 2169-2187. |
19 | MONICA F, BUONERBA A, PARADISO V, et al. [OSSO]-type Fe(III) metallate as single-component catalyst for the CO2 cycloaddition to epoxides[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 283-288. |
20 | SEONG E, KIM J, KIM N, et al. Multifunctional and sustainable Fe-iminopyridine complexes for the synthesis of cyclic carbonate[J]. ChemSusChem, 2019, 12(2): 409-415. |
21 | KAMPHUIS A, MILOCCO F, KOITER L, et al. Highly selective single-component formazanate ferrate(II) catalysts for the conversion of CO2 into cyclic carbonates[J]. ChemSusChem, 2019, 12(15): 3635-3641. |
22 | ANDREA K, BUTLER E, BOWN T, et al. Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry[J]. Inorganic Chemistry, 2019, 58(16): 11231-11240. |
23 | LIU J, YANG G, LIU Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry, 2020, 22(14): 4509-4515. |
24 | RINTJEMA J, KLEIJ A. Aluminum-mediated formation of cyclic carbonates: benchmarking catalytic performance metrics[J]. ChemSusChem, 2017, 10(6): 1274-1282. |
25 | JIN X, DING J, XIA Q, et al. Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: catalyst design, performances and reaction mechanism[J]. Journal of CO2 Utilization, 2019, 34: 115-148. |
26 | DECORTES A, KLEIJ A. Ambient fixation of carbon dioxide using a ZnIIsalphen catalys[J]. ChemCatChem, 2011, 3(5): 831-834. |
27 | CLEGG W, HARRINGTON R, NORTH M, et al. Cyclic carbonate synthesis catalysed by bimetallic aluminium-salen complexes[J]. Chemistry, 2010, 16(23): 6828-6843. |
28 | TAHERIMEHR M, DECORTES A, AL-AMSYAR S, et al. A highly active Zn(salphen) catalyst for production of organic carbonates in a green CO2 medium[J]. Catalysis Science & Technology, 2012, 2(11): 2231-2237. |
29 | BEATTIE C, NORTH M, VILLUENDAS P, et al. Influence of temperature and pressure on cyclic carbonate synthesis catalyzed by bimetallic aluminum complexes and application to overall syn-bis-hydroxylation of alkenes[J]. The Journal of Organic Chemistry, 2013, 78(2): 419-426. |
30 | KIELLAND N, ESCUDERO-ADAN E, BELMONTE M, et al. Unsymmetrical octanuclear Schiff base clusters: Synthesis, characterization and catalysis[J]. Dalton Transactions, 2013, 42(5): 1427-1436. |
31 | GASTRO-GOMEZ F, SALASSA G, KLEIJ A, et al. A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes[J]. Chemistry, 2013, 19(20): 6289-6298. |
32 | DECORTES A, BELMONTE M, BENET-BUCHHOLZ J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582. |
33 | DECORTES A, CASTILLA M, KLEIJ A. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides[J]. Angewandte Chemie International Edition, 2010, 49(51): 9822-9837. |
34 | BYUN Y, LEE J, RYU J, et al. Titanium complexes containing tridentate [ONO] type Schiff base ligands for the cycloaddition reaction of CO2 to propylene oxide[J]. Polyhedron, 2018, 141: 191-197. |
35 | EMA T, MIYAZAKI Y, KOYAMA S, et al. A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates[J]. Chemical Communication, 2012, 48(37): 4489-4491. |
36 | EMA T, MIYAZAKI Y, SHIMONISHI J, et al. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study[J]. Journal of American Chemical Society, 2014, 136(43): 15270-152749. |
37 | CALMANTI R, SELVA M, PEROSA A, et al. Tandem catalysis: one-pot synthesis of cyclic organic carbonates from olefins and carbon dioxide[J]. Green Chemistry, 2021, 23(5): 1921-1941. |
38 | PESCARMONA P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100457. |
39 | TAKEDA N, INOUE S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins[J]. Makromolekulare Chemie, 1978, 179(5): 1377-1381. |
40 | KRUPER W, DELLAR D. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates[J]. Journal of Organic Chemistry, 1995, 60(3): 725-727. |
41 | BAI D, DUAN S, HAI L, et al. Carbon dioxide fixation by cycloaddition with epoxides, catalyzed by biomimetic metalloporphyrins[J]. ChemCatChem, 2012, 4(11): 1752-1758. |
42 | JIN L, JING H, CHANG T, et al. Metal porphyrin/phenyltrimethylammonium tribromide: High efficient catalysts for coupling reaction of CO2 and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 262-266. |
43 | KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure[J]. The Journal of Organic Chemistry, 1993, 58(23): 6198-6202. |
44 | MONASSIER A, DELIA V, COKOJA M, et al. Synthesis of cyclic carbonates from epoxides and CO2 under mild conditions using a simple, highly efficient niobium-based catalyst[J]. ChemCatChem, 2013, 5(6): 1321-1324. |
45 | REN Y, SHIM J. Efficient synthesis of cyclic carbonates by MgII/phosphine-catalyzed coupling reactions of carbon dioxide and epoxides[J]. ChemCatChem, 2013, 5(6): 1344-1349. |
46 | DELIA V, GHANI A, MONASSIER A, et al. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: assessing the dual role of the nucleophilic Co-catalysts[J]. Chemistry, 2014, 20(37): 11870-11882. |
47 | ZHONG S, LIANG L, LIU B, et al. ZnBr2/DMF as simple and highly active Lewis acid–base catalysts for the cycloaddition of CO2 to propylene oxide[J]. Journal of CO2 Utilization, 2014, 6: 75-79. |
48 | BARTHEL A, SAIH Y, GIMENEZ M, et al. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas[J]. Green Chemistry, 2016, 18(10): 3116-3123. |
49 | LIU X, ZHANG S, SONG Q, et al. Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4.0]- undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure[J]. Green Chemistry, 2016, 18( 9): 2871-2876. |
50 | KASUGA K, KABATA N. The fixation of carbon dioxide with 1,2 -epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether[J]. Inorganica Chimica Acta, 1997, 257(2): 277-278. |
51 | ZHU H, CHEN L, JIANG Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions[J]. Polymers for Advanced Technologies, 1995, 7(8): 701-703. |
52 | THARUN J, MATHAI G, KATHALIKKATTIL A, et al. Microwave-assisted synthesis of cyclic carbonates by a formic acid/KI catalytic system[J]. Green Chemistry, 2013, 15(6): 1673-1677. |
53 | YANG Z, SUN J, CHENG W, et al. Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2 [J]. Catalysis Communications, 2014, 44: 6-9. |
54 | MA J, LIU J, ZHANG Z, et al. The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide[J]. Green Chemistry, 2012, 14(9): 2410-2420. |
55 | LIU N, XIE Y, WANG C, et al. Cooperative multifunctional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8(11): 9945-9957. |
56 | ARAYACHUKIAT S, KONGTES C, BARTHEL A, et al. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6392-6397. |
57 | ALASSMY Y, PESCARMONA P. The role of water revisited and enhanced: a sustainable catalytic system for the conversion of CO2 into cyclic carbonates under mild conditions[J]. ChemSusChem, 2019, 12(16): 3856-3863. |
58 | KAWANAMI H, IKUSHIMA Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts[J]. Chemical Communications, 2000, 21: 2089-2090. |
59 | JIANG J, HUA R. Efficient DMF-catalyzed coupling of epoxides with CO2 under solvent-free conditions to afford cyclic carbonates[J]. Synthetic Communications, 2006, 36(21): 3141-3148. |
60 | YU K, CURCIC I, GABRIEL J, et al. Catalytic coupling of CO2 with epoxide over supported and unsupported amines[J]. Journal of Physical Chemistry A, 2010, 114(11): 3863-3872. |
61 | SHIELS R, JONES C. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 160-166. |
62 | ZHOU H, ZHANG W, LIU C, et al. CO2 adducts of N-heterocyclic carbenes thermal stability and catalytic activity toward the coupling of CO2 with epoxides[J]. The Journal of Organic Chemistry, 2008, 73(20): 8039 -8044. |
63 | AJITHA M, SURESH C. NHC catalyzed CO2 fixation with epoxides: Probable mechanisms reveal ter molecular pathway[J]. Tetrahedron Letters, 2011, 52(41): 5403-5406. |
64 | PENG J, DENG Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001, 25(4): 639-641. |
65 | WILHELM M, ANTHOFER M, COKOJA M, et al. Cycloaddition of carbon dioxide and epoxides using pentaerythritol and halides as dual catalyst system[J]. ChemSusChem, 2014, 7(5): 1357-1360. |
66 | WANG J, CHEGN W, SUN J, et al. Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids[J] RSC Advances, 2014, 4(5): 2360-2367. |
67 | SUN J, HAN L, CHENG W, et al. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions[J]. ChemSusChem, 2011, 4(4): 502-507. |
68 | ZHANG X, ZHAO N, WEI W, et al. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts[J]. Catalysis Today, 2006, 115(1/2/3/4): 102-106. |
69 | SANKAR M, AJITHKUMAR T, SANKAR G, et al. Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2 [J]. Catalysis Communications, 2015, 59: 201-205. |
70 | XIAO L, LI F, PENG J, XIA C. Immobilized ionic liquid/zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 265-269. |
71 | DELIA V, DONG H, ROSSINI A, et al. Cooperative effect of monopodal silica-supported niobium complex pairs enhancing catalytic cyclic carbonate production[J]. Journal of American Chemical Society, 2015, 137(24): 7728-7739. |
72 | BOBBINK F, MUYDEN A, GOPAKUMAR A, et al. Synthesis of cross-linked ionic poly(styrenes) and their application as catalysts for the synthesis of carbonates from CO2 and epoxides[J]. Chempluschem, 2017, 82(1): 144-151. |
73 | AN Q, LI Z, GRAFF R, et al. Core-double-shell Fe3O4@carbon@poly(In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)-Salen bifunctional catalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4969-4978. |
74 | YANO T, MATSUI H, KOIKE T, et al. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry[J]. Chemical Communications, 1997, 12: 1129-1130. |
75 | YAMAGUCHI K, EBITANI K, YOSHIDA T, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 1999, 121: 4526-4527. |
76 | ZHANG S, XIA Z, ZOU Y, et al. Interfacial frustrated lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates[J]. Journal of the American Chemical Society, 2019, 141(29): 11353-11357. |
77 | DAI W, YIN S, GUO R, et al. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catalysis Letters, 2009, 136(1/2): 35-44. |
78 | SONG J, ZHANG Z, HU S, et al. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chemistry, 2009, 11(7): 1031-1036. |
79 | THARUN J, MATHAI G, KATHALIKKATTIL A, et al. Exploring the catalytic potential of ZIF-90: solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO2 [J]. Chempluschem, 2015, 80(4): 715-721. |
80 | THARUN J, MIBHIN K, ROSHAN R, et al. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2 [J]. Green Chemistry, 2016, 18(8): 2479-2487. |
81 | KIM H, KIM J, LEE B, et al. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides[J]. Angewandte International Edition Chemie, 2000, 39(22): 4096-4098. |
82 | SHEN Y, DUAN W, SHI M. Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates[J]. Advanced Synthesis & Catalysis, 2003, 345(3): 337-340. |
83 | STEINBAUER J, KUBIS C, LUDWIG R, et al. Mechanistic study on the addition of CO2 to epoxides catalyzed by ammonium and phosphonium salts: a combined spectroscopic and kinetic approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10778-10788. |
84 | WANG J, SUN J, CHENG W, et al. Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates[J]. Physical Chemistry Chemical Physics, 2012, 14(31): 11021-11026. |
85 | LIU M, WANG X, JIANG Y, et al. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis[J]. Catalysis Reviews, 2018, 61(2): 214-269. |
86 | HE J, WU T, ZHANG Z, et al. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts[J]. Chemistry, 2007, 13(24): 6992-6997. |
87 | DELIA V, PELLETIER J, BASSET J. Cycloadditions to epoxides catalyzed by group III-V transition-metal complexes[J]. ChemCatChem, 2015, 7(13): 1906-1917. |
88 | ROSHAN K, PALISSERY R, KATHALIKKATTIL A, et al. A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO2: bicarbonate anion as an active species[J]. Catalysis Science & Technology, 2016, 6(11): 3997-4004. |
89 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
90 | SANKAR M, TARTE N, MANIKANDAN P. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides[J]. Applied Catalysis A: General, 2004, 276(1/2): 217-222. |
91 | HELDEBRANT D, JESSOP P, THOMAS C, et al. The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide[J]. The Journal of Organic Chemistry, 2005, 70(13): 5335-5338. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[11] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[14] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[15] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |