Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4562-4570.DOI: 10.16085/j.issn.1000-6613.2022-0121
• Resources and environmental engineering • Previous Articles Next Articles
YI Xuenong(), LI Jingmei, GAO Yuqiong()
Received:
2022-01-18
Revised:
2022-03-24
Online:
2022-08-22
Published:
2022-08-25
Contact:
GAO Yuqiong
通讯作者:
高玉琼
作者简介:
伊学农(1962—),男,博士,副教授,研究方向为水处理优化和资源化。E-mail:基金资助:
CLC Number:
YI Xuenong, LI Jingmei, GAO Yuqiong. Oxidative degradation of naproxen in water by UV-Fe(Ⅵ) process[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4562-4570.
伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0121
水样 | pH | Cl-/mg·L-1 | HCO | DOC/mg·L-1 |
---|---|---|---|---|
纯净水 | 7.00 | 0 | 0 | ≤0.02 |
天然水 | 7.53 | 6 | 143 | 6.19 |
自来水厂出厂水 | 7.66 | 10 | 137 | 4.31 |
水样 | pH | Cl-/mg·L-1 | HCO | DOC/mg·L-1 |
---|---|---|---|---|
纯净水 | 7.00 | 0 | 0 | ≤0.02 |
天然水 | 7.53 | 6 | 143 | 6.19 |
自来水厂出厂水 | 7.66 | 10 | 137 | 4.31 |
物质 | m/z | 名称 | 结构 |
---|---|---|---|
NPX | 230 | 萘普生 | |
P246 | 246 | 羟基萘普生 | |
P134 | 134 | 羟基丁二酸 | |
P184 | 184 | 2-甲氧基-6-萘乙烯 | |
P200 | 200 | 2-甲氧基-6-萘乙酮 | |
P186 | 186 | 2-甲氧基-6-乙基萘 | |
P216 | 216 | 2-(6-羟基-2-萘基)丙酸 | |
P202 | 202 | 2-(6-甲氧基-2-萘基)乙醇 | |
P158 | 158 | 2-萘乙醚 |
物质 | m/z | 名称 | 结构 |
---|---|---|---|
NPX | 230 | 萘普生 | |
P246 | 246 | 羟基萘普生 | |
P134 | 134 | 羟基丁二酸 | |
P184 | 184 | 2-甲氧基-6-萘乙烯 | |
P200 | 200 | 2-甲氧基-6-萘乙酮 | |
P186 | 186 | 2-甲氧基-6-乙基萘 | |
P216 | 216 | 2-(6-羟基-2-萘基)丙酸 | |
P202 | 202 | 2-(6-甲氧基-2-萘基)乙醇 | |
P158 | 158 | 2-萘乙醚 |
1 | CARBALLA M, OMIL F, LEMA J M. Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment[J]. Water Research, 2005, 39: 4790-4796. |
2 | SHARMA V K. Potassium ferrate( Ⅵ ): an environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6: 143-156. |
3 | 吕婧, 封莉, 张立秋. 不同活性炭对水中微量药物萘普生的吸附规律研究[J]. 环境科学学报, 2012, 32(10): 2443-2449. |
LYU J, FENG L, ZHANG L Q. Adsorption of trace naproxen in water by different activated carbons[J]. Acta Scientiae Circumstantiae, 2012, 32(10): 2443-2449. | |
4 | SHARMA V K, ZBORIL R, VARMA R S. Ferrates: greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2): 82-191. |
5 | FENG M B, JINADATHA C, MCDONALD T J. Accelerated oxidation of organic contaminants by ferrate(Ⅵ): the overlooked role of reducing additives[J]. Environmental Science & Technology, 2018, 52(19): 11319-11327. |
6 | MANOLI K, NAKHLA G, RAY A K, et al. Enhanced oxidative transformation of organic contaminants by activation of ferrate( Ⅵ ): possible involvement of FeⅤ/FeⅣ species[J]. Chemical Engineering Journal, 2017, 307: 513-517. |
7 | FENG M, CIZMAS L, WANG Z Y, et al. Activation of ferrate(Ⅵ) by ammonia in oxidation of flumequine: kinetics, transformation products, and antibacterial activity assessment[J]. Chemical Engineering Journal, 2017, 323: 584-591. |
8 | BZDYRA B M, SPELLMAN JR C D, ANDREU I, et al. Sulfite activation changes character of ferrate resultant particles[J]. Chemical Engineering Journal, 2020, 393: 124771. |
9 | GONG H, CHU W, XU K H, et al. Efficient degradation, mineralization and toxicity reduction of sulfamethoxazole under photo-activation of peroxymonosulfate by ferrate( Ⅵ )[J]. Chemical Engineering Journal, 2020, 389: 124084. |
10 | CHU W H, LI D M, GAO N Y, et al. The control of emerging haloacetamide DBP precursors with UV/persulfate treatment[J]. Water Research, 2015, 72: 340-348. |
11 | SHADA A, CHEN J, QU R J, et al. Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics, degradation products, and reaction pathways[J]. Chemical Engineering Journal, 2020, 398: 125357. |
12 | CHEN Y Q, XIONG Y, WANG Z P, et al. UV/ferrate(Ⅵ) oxidation of profenofos: efficiency and mechanism[J]. Desalination and Water Treatment, 2015, 55(2): 506-513. |
13 | ASLANI H, NASSERI S, NABIZADEH R, et al. Haloacetic acids degradation by an efficient Ferrate/UV process: byproduct analysis, kinetic study, and application of response surface methodology for modeling and optimization[J]. Journal of Environmental Management, 2017, 203: 218-228. |
14 | VANESSA J, PEREIRA, HOWARD S, et al. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254nm[J]. Environmental Science & Technology, 2007, 41: 1682-1688. |
15 | WU S H, LI H R, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353: 533-541. |
16 | FENG M B, SHARMA V K. Enhanced oxidation of antibiotics by ferrate(Ⅵ)-sulfur(Ⅳ) system: elucidating multi-oxidant mechanism[J]. Chemical Engineering Journal, 2018, 341: 137-145. |
17 | ZOSCHKE K, BORNICK H, WORCH E. Vacuum-UV radiation at 185nm in water treatment: a review[J]. Water Research, 2014, 52: 131-145. |
18 | SHARMA V K. Ferrate( Ⅵ ) and ferrate( Ⅴ ) oxidation of organic compounds: kinetics and mechanism[J]. Coordination Chemistry Reviews, 2013, 257: 495-510. |
19 | LI H C, SHAN C, PAN B C. Fe( Ⅲ )-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron oxo species[J]. Environmental Science & Technology, 2018, 52: 2197-2205. |
20 | LI Y, WU Y L, DONG W B. Trace catechin enhanced degradation of organic pollutants with activated peroxymonosulfate: comprehensive identification of working oxidizing species[J]. Chemical Engineering Journal, 2022, 429: 132408. |
21 | SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants[J]. Environmental Science & Technology, 2019, 53: 894-902. |
22 | GAO Y Q, ZHANG J, LI C, et al. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H2O2 processes[J]. Chemosphere, 2020, 243: 125325. |
23 | WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(Ⅱ) for environmental decontamination[J]. Environmental Science & Technology, 2018, 52: 11276-11284. |
24 | 袁光明, 皮若冰, 吴钊成, 等. 高铁酸盐-亚硫酸盐体系氧化降解水中污染物阿特拉津[J]. 化工进展, 2020, 39(9): 3794-3800. |
YUAN G M, PI R B, WU Z C, et al. Oxidative degradation of atrazine in water by ferrate-sulfite system[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3794-3800. | |
25 | LAI X J, NING X A, ZHANG Y P, et al. Treatment of simulated textile sludge using the Fenton/Cl- system: the roles of chlorine radicals and superoxide anions on PAHs removal[J]. Environmental Research, 2021, 197: 110997. |
26 | 方智煌, 刘祥, 余阳, 等. 高铁酸盐对水中H2受体拮抗剂的降解特性[J]. 化工进展, 2021, 40(8): 4647-4655. |
FANG Z H, LIU X, YU Y, et al. Performance and properties of H2 receptor antagonist degradation by ferrate[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4647-4655. | |
27 | WU S H, LIU H Y, LIN Y, et al. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: role of superoxide radicals[J]. Chemosphere, 2020, 244: 125490. |
28 | GU D, GUO C S, HOU S, et al. Kinetic and mechanistic investigation on the decomposition of ketamine by UV-254nm activated persulfate[J]. Chemical Engineering Journal, 2019, 370: 19-26. |
29 | WANG S L, WU J F, LU X Q, et al. Removal of acetaminophen in the Fe2+/persulfate system: kinetic model and degradation pathways[J]. Chemical Engineering Journal, 2019, 358: 1091-1100. |
30 | KRALCHEVSKA R P, PRUCE R, KOLARIK J, et al. Remarkable efficiency of phosphate removal: ferrate(Ⅵ)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016,103: 83-91. |
31 | WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
32 | CHI H Z, HE X, ZHANG J Q, et al. Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition: efficiency, mechanisms and pathway[J]. Chemical Engineering Journal, 2019, 361: 764-772. |
33 | JALLOULI N, ELGHNIJI K, HENTATI O, et al. UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment[J]. Journal of Hazardous Materials, 2016, 304: 329-336. |
34 | JIMENEZ-SALCEDO M, MONGE M, TENA M T. The photocatalytic degradation of naproxen with g-C3N4 and visible light: identification of primary by-products and mechanism in tap water and ultrapure water[J]. Journal of Environmental Chemical Engineering, 2022, 10: 106964. |
35 | KANAKARAJU D, MOTTI C A, GLASS B D, et al. TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates[J]. Chemosphere, 2015, 139: 579-588. |
36 | LUO S, GAO L W, WEI Z S, et al. Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates[J]. Water Research, 2018, 137: 233-241. |
[1] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[2] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
[3] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
[4] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
[5] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[6] | HE Changfan, ZHAO Xiaohang, ZHANG Xueying, HE Lin, SUI Hong, LI Xingang. Peroxymonosulfate-ferrate-FeS system soil column leaching to remediate o-dichlorobenzene contaminated soil [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2743-2752. |
[7] | ZHOU Yongquan, ZHANG Ai, LIU Yanan, WANG Zheng. Removal of glucocorticoids from aqueous solution by plasma jet combined with activated carbon fiber [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2209-2215. |
[8] | ZHAI Chongyuan, ZHAO Dandi, HE Yapeng, HUANG Hui, CHEN Buming, GUO Zhongcheng. Recent development on boron-doped diamond anodes in electrochemical degradation of emerging antibiotic pollutants [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6615-6626. |
[9] | LYU Peng, HE Changfan, HE Lin, LI Xingang, SUI Hong. Degradation characteristics and enhancement mechanism of heavy oily sludge by heterogeneous oxidation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6149-6157. |
[10] | GUO Yingming, ZHANG Yuhong, MA Ben, YUAN Shengchen, QIU Wenxuan, YANG Jing. Removal of CODMn in water by potassium ferrate enhanced iron-manganese oxide film filtration and its influencing factors [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6130-6138. |
[11] | WANG Jikun, LI Yang, CHEN Guifeng, LIU Min, KOU Lihong, WANG Qi, HE Yicong. Catalytic oxidation mechanism of organics degradation by ozone in high-salt wastewater of coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 493-502. |
[12] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
[13] | QIAN Yuanyuan, WANG Yongjie, YANG Xuejing. Application of ozone for water treatment and implication of mass transfer characteristics [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 411-425. |
[14] | FANG Zhihuang, LIU Xiang, YU Yang, QIAN Yajie, XUE Gang. Performance and properties of H2-receptor antagonist degradation by ferrate [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4647-4655. |
[15] | WU Wentong, ZHANG Lingling, LI Zifu, WANG Chenxi, YU Chunsong, WANG Qingguo. Research progress of advanced oxidation technology in degradation of antibiotics and removal of antibiotic resistance [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4551-4561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |