Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4498-4512.DOI: 10.16085/j.issn.1000-6613.2021-2045
• Resources and environmental engineering • Previous Articles Next Articles
JI Xuanyu1,2(), LIN Weijian1,2, ZHOU Xiong1,2, BAI Jisong1,2, YANG Yu1,2, KONG Jie1,2, LIAO Chongyang1,2
Received:
2021-09-29
Revised:
2021-12-08
Online:
2022-08-22
Published:
2022-08-25
Contact:
JI Xuanyu
季炫宇1,2(), 林伟坚1,2, 周雄1,2, 柏继松1,2, 杨宇1,2, 孔杰1,2, 廖重阳1,2
通讯作者:
季炫宇
作者简介:
季炫宇(1981—),男,博士,副教授,研究方向为清洁燃烧技术、固废资源化处理。E-mail:基金资助:
CLC Number:
JI Xuanyu, LIN Weijian, ZHOU Xiong, BAI Jisong, YANG Yu, KONG Jie, LIAO Chongyang. Research status and progress of waste tire pyrolysis technology[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4498-4512.
季炫宇, 林伟坚, 周雄, 柏继松, 杨宇, 孔杰, 廖重阳. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2045
物料 种类 | 元素/% | 热值 /MJ·kg-1 | ||||
---|---|---|---|---|---|---|
C | H | N | S | O* | ||
废轮胎 | 86.3 | 8.42 | 0.81 | 2.57 | 1.9 | 36.27 |
煤 | 88.04 | 5.52 | 1.8 | 0.42 | 4.22 | 20.34 |
木屑 | 49.84 | 7.73 | 2.88 | 0 | 39.55 | 15.41 |
塑胶 | 59.97 | 8.76 | 3.76 | 0.25 | 27.26 | 30.19 |
物料 种类 | 元素/% | 热值 /MJ·kg-1 | ||||
---|---|---|---|---|---|---|
C | H | N | S | O* | ||
废轮胎 | 86.3 | 8.42 | 0.81 | 2.57 | 1.9 | 36.27 |
煤 | 88.04 | 5.52 | 1.8 | 0.42 | 4.22 | 20.34 |
木屑 | 49.84 | 7.73 | 2.88 | 0 | 39.55 | 15.41 |
塑胶 | 59.97 | 8.76 | 3.76 | 0.25 | 27.26 | 30.19 |
热解技术 | 热解装置 | 液相最大产率 /% | 固相最大产率 /% | 气相最大产率 /% | 优点 | 缺点 |
---|---|---|---|---|---|---|
直接热解 | 适用多种热解装置 | 45.2 | 49.53 | 14 | 热解工艺简单,成本较低 | 高价值产物回收效率较低 |
熔融盐热解 | 熔融盐热解装置 | 43.6 | 53.2 | 14.7 | 反应迅速;共融物可循环使用 | 对设备稳定性要求较高 |
等离子体热解 | 等离子体炬装置 | — | 78.4 | 65.6 | 污染极小;气体产物中H2占比较大;固相产物品质与商业炭黑一致 | 能耗高;不适用于制备热解油 |
催化热解 | 适用多种热解装置 | 60 | — | 24.8 | 可提升高价值目标产物产率 | 积炭结焦,活性降低;价格较昂贵 |
微波热解 | 微波热解炉 | 44.2 | 44.8 | 26 | 可实现整胎热解;污染小 | 实际热解温度难以测定 |
共热解 | 适用多种热解装置 | 48 | — | 35.4 | 最佳热解温度较低,能耗低 | 轮胎占比过高降低油品质量 |
热解技术 | 热解装置 | 液相最大产率 /% | 固相最大产率 /% | 气相最大产率 /% | 优点 | 缺点 |
---|---|---|---|---|---|---|
直接热解 | 适用多种热解装置 | 45.2 | 49.53 | 14 | 热解工艺简单,成本较低 | 高价值产物回收效率较低 |
熔融盐热解 | 熔融盐热解装置 | 43.6 | 53.2 | 14.7 | 反应迅速;共融物可循环使用 | 对设备稳定性要求较高 |
等离子体热解 | 等离子体炬装置 | — | 78.4 | 65.6 | 污染极小;气体产物中H2占比较大;固相产物品质与商业炭黑一致 | 能耗高;不适用于制备热解油 |
催化热解 | 适用多种热解装置 | 60 | — | 24.8 | 可提升高价值目标产物产率 | 积炭结焦,活性降低;价格较昂贵 |
微波热解 | 微波热解炉 | 44.2 | 44.8 | 26 | 可实现整胎热解;污染小 | 实际热解温度难以测定 |
共热解 | 适用多种热解装置 | 48 | — | 35.4 | 最佳热解温度较低,能耗低 | 轮胎占比过高降低油品质量 |
T/℃ | 废轮胎热解气组分/% | 热值/MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
CH 4 | H 2 | CO | CO 2 | C 2 H 4 | C 3 H 6 | C 3 H 9 | 其他 | ||
400 | 24.73 | 12.07 | 13.07 | 18.51 | 4.84. | 7.95 | 5.98 | 9.24 | 32.04 |
450 | 28.25 | 13.39 | 11.69 | 12.17 | 5.44 | 8.25 | 6.47 | 9.31 | 35.44 |
500 | 32.83 | 15.58 | 7.58 | 7.17 | 6.54 | 7.87 | 6.23 | 8.57 | 37.75 |
550 | 34.84 | 15.18 | 7.18 | 7.18 | 6.45 | 7.04 | 6.07 | 7.81 | 37.54 |
600 | 37.01 | 16.00 | 6.34 | 6.31 | 6.00 | 6.07 | 5.33 | 9.55 | 36.49 |
650 | 40.16 | 17.06 | 5.43 | 5.50 | 5.50 | 5.25 | 4.55 | 9.80 | 35.46 |
T/℃ | 废轮胎热解气组分/% | 热值/MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|
CH 4 | H 2 | CO | CO 2 | C 2 H 4 | C 3 H 6 | C 3 H 9 | 其他 | ||
400 | 24.73 | 12.07 | 13.07 | 18.51 | 4.84. | 7.95 | 5.98 | 9.24 | 32.04 |
450 | 28.25 | 13.39 | 11.69 | 12.17 | 5.44 | 8.25 | 6.47 | 9.31 | 35.44 |
500 | 32.83 | 15.58 | 7.58 | 7.17 | 6.54 | 7.87 | 6.23 | 8.57 | 37.75 |
550 | 34.84 | 15.18 | 7.18 | 7.18 | 6.45 | 7.04 | 6.07 | 7.81 | 37.54 |
600 | 37.01 | 16.00 | 6.34 | 6.31 | 6.00 | 6.07 | 5.33 | 9.55 | 36.49 |
650 | 40.16 | 17.06 | 5.43 | 5.50 | 5.50 | 5.25 | 4.55 | 9.80 | 35.46 |
油品特性 | 国际标准(商业柴油) | 热解油 | 检测方法 | |
---|---|---|---|---|
最小值 | 最大值 | |||
十六烷值 | 45 | 55 | 47 | ISO 5156 |
密度 (15℃)/kg·m-3 | 840 | 880 | 847 | ISO 3675 |
黏度 (40℃)/mm2·s-1 | 2.0 | 5.5 | 2.4 | ISO 3104 |
S质量分数/% | 0.1 | 0.5 | 0.38 | ISO/DIS 14596 |
闪点/℃ | 52 | — | 48 | EN 22719 |
油品特性 | 国际标准(商业柴油) | 热解油 | 检测方法 | |
---|---|---|---|---|
最小值 | 最大值 | |||
十六烷值 | 45 | 55 | 47 | ISO 5156 |
密度 (15℃)/kg·m-3 | 840 | 880 | 847 | ISO 3675 |
黏度 (40℃)/mm2·s-1 | 2.0 | 5.5 | 2.4 | ISO 3104 |
S质量分数/% | 0.1 | 0.5 | 0.38 | ISO/DIS 14596 |
闪点/℃ | 52 | — | 48 | EN 22719 |
1 | 苏瑞景, 关杰, 梁波. 废轮胎资源化利用现状[J]. 上海第二工业大学学报, 2016, 33(1): 20-26. |
SU Ruijing, GUAN Jie, LIANG Bo. Research progress in recycling of waste tyre[J]. Journal of Shanghai Second Polytechnic University, 2016, 33(1): 20-26. | |
2 | WILLIAMS P T. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728. |
3 | 曾毅夫, 吴志恒, 何曦, 等. 废旧轮胎热解资源化技术进展[J]. 橡胶工业, 2020, 67(12): 949-953. |
ZENG Yifu, WU Zhiheng, HE Xi, et al. Technical progress of pyrolysis and recycling of waste tires[J]. China Rubber Industry, 2020, 67(12): 949-953. | |
4 | 张珊珊. 核桃壳木醋液的生物活性与化学成分研究[D]. 杨凌: 西北农林科技大学, 2010. |
ZHANG Shanshan. Biological activities and chemical profiles of pyroligneous acids from walnut shell[D]. Yangling: Northwest A & F University, 2010. | |
5 | CRESPO J E, PARRES F, NADAL A, et al. Improved tire adhesion of laminates (GTR) by incorporating reclaimed rubber (NRR)[J]. Annals of the Oradea University Fascicle of Management and Technological Engineering, 2011, 3(3): DOI: 10.15660/AUOFMTE.2011-3.2340. |
6 | 黄菊文, 李光明, 贺文智, 等. 废旧轮胎热解资源化技术研究进展[J]. 化工进展, 2010, 29(11): 2159-2164. |
HUANG Juwen, LI Guangming, HE Wenzhi, et al. Research progress in recovery technology of waste tyre by pyrolysis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2159-2164. | |
7 | 孙岳红, 雷国安, 路丽珠, 等. 废旧橡胶循环利用技术进展[J]. 橡胶科技, 2020, 18(2): 77-80. |
SUN Yuehong, LEI Guoan, LU Lizhu, et al. Technology progress of waste rubber recycling[J]. Rubber Science and Technology, 2020, 18(2): 77-80. | |
8 | 高若峰, 王迎雪, 彭少贤, 等. 废旧橡胶回收利用再生剂研究进展[J]. 弹性体, 2015, 25(4): 74-77. |
GAO Ruofeng, WANG Yingxue, PENG Shaoxian, et al. Progress in reclaiming agent of waste rubber regeneration[J]. China Elastomerics, 2015, 25(4): 74-77. | |
9 | REN Qiangqiang, WU Ziyue, HU Song, et al. Sulfur self-doped char with high specific capacitance derived from waste tire: effects of pyrolysis temperature[J]. Science of the Total Environment, 2020, 741: 140193. |
10 | 齐涛, 王娜, 张纪刚. 废橡胶与煤共热解的工艺研究[J]. 煤炭加工与综合利用, 2018(12): 22-25. |
QI Tao, WANG Na, ZHANG Jigang. Study on the co-pyrolysis process of waste rubber and coal[J]. Coal Processing & Comprehensive Utilization, 2018(12): 22-25. | |
11 | 戴贤明. 废轮胎热解过程及产物特性试验研究[D]. 武汉: 华中科技大学, 2009. |
DAI Xianming. Experimental research on pyrolysis process of waste tyres and characteristics of pyrolytic products[D]. Wuhan: Huazhong University of Science and Technology, 2009. | |
12 | 隋莹. 废旧轮胎热解的动力学研究与特性分析[J]. 橡塑技术与装备, 2017, 43(13): 39-44. |
SUI Ying. Dynamic research and characteristics analysis of pyrolysis of waste tires[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(13): 39-44. | |
13 | 赵巍, 汪琦, 邹宗树, 等. 塑料和橡胶垃圾的热解机理及动力学分析[J]. 工程热物理学报, 2008, 29(11): 1977-1979. |
ZHAO Wei, WANG Qi, ZOU Zongshu, et al. Pyrolysis mechanism and kinetics of plastic and rubber waste[J]. Journal of Engineering Thermophysics, 2008, 29(11): 1977-1979. | |
14 | ARABIOURRUTIA M, LOPEZ G, ELORDI G, et al. Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5271-5275. |
15 | MURILLO R, ARANDA A, AYLÓN E, et al. Process for the separation of gas products from waste tire pyrolysis[J]. Industrial & Engineering Chemistry Research, 2006, 45(5): 1734-1738. |
16 | JUMA M, KOREŇOVÁ Z, MARKOŠ J, et al. Pyrolysis and combustion of scrap tire[J]. Petroleum & Coal, 2006, 48(1):15-26. |
17 | 陈波宇, 顾瑛, 陈生, 等. 热重分析法测定橡胶并用比[J]. 轮胎工业, 2021, 41(6): 395-398. |
CHEN Boyu, GU Ying, CHEN Sheng, et al. Determination of rubber blend ratio by thermogravimetric analysis method[J]. Tire Industry, 2021, 41(6): 395-398. | |
18 | LEUNG D Y C, WANG C L. Kinetic study of scrap tyre pyrolysis and combustion[J]. Journal of Analytical and Applied Pyrolysis, 1998, 45(2): 153-169. |
19 | 王林郁. 废轮胎热解动力学分析[J]. 山东化工, 2011, 40(12): 56-58. |
WANG Linyu. Pyrolysis kinetics analysis of waste tire[J]. Shandong Chemical Industry, 2011, 40(12): 56-58. | |
20 | 苏亚欣, 张先中, 赵兵涛. 废轮胎粉的热解特性及其动力学模型[J]. 东华大学学报(自然科学版), 2008, 34(6): 740-743, 751. |
SU Yaxin, ZHANG Xianzhong, ZHAO Bingtao. Pyrolysis of waste tire powder and its dynamic model[J]. Journal of Donghua University (Natural Science), 2008, 34(6): 740-743, 751. | |
21 | 孙蓉, 朱宝忠, 孙运兰. 热分析-质谱法研究汽车废轮胎热解行为及反应动力学[J]. 过程工程学报, 2016, 16(6): 966-971. |
SUN Rong, ZHU Baozhong, SUN Yunlan. Pyrolysis and reaction kinetics of automobile waste tire with TG-DSC-MS technique[J]. The Chinese Journal of Process Engineering, 2016, 16(6): 966-971. | |
22 | 闫大海. 废轮胎回转窑中试热解产物应用及热解机理和动力学模型研究[D]. 杭州: 浙江大学, 2006. |
YAN Dahai. Study on the utilization of pyrolytic products from pyrolysis of used tyre in a pilot-scale rotary kiln and the mechanism and kinetic model of rubber pyrolysis[D]. Hangzhou: Zhejiang University, 2006. | |
23 | MIRANDA M, PINTO F, GULYURTLU I, et al. Pyrolysis of rubber tyre wastes: a kinetic study[J]. Fuel, 2013, 103: 542-552. |
24 | YAO Erren, WANG Yuzhuo, YANG Qirong, et al. Co-pyrolysis mechanism of natural rubber and cellulose based on thermogravimetry-gas chromatography and molecular dynamics simulation[J]. Energy & Fuels, 2019, 33(12): 12450-12458. |
25 | LARESGOITI M F, CABALLERO B M, DE MARCO I, et al. Characterization of the liquid products obtained in tyre pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2): 917-934. |
26 | 张会亮, 范晓旭, 刘彦丰, 等. 块状废轮胎固定床热解特性实验研究[J]. 可再生能源, 2015, 33(1): 149-153. |
ZHANG Huiliang, FAN Xiaoxu, LIU Yanfeng, et al. Experimental study on pyrolysis of blocky tires in a fixed-bed reactor[J]. Renewable Energy Resources, 2015, 33(1): 149-153. | |
27 | 李鑫. 废轮胎流化床热解特性研究[D]. 杭州: 浙江大学, 2003. |
LI Xin. Studies on characteristics of pyrolysis for waste tires in fluidized bed[D]. Hangzhou: Zhejiang University, 2003. | |
28 | 张兴华, 常杰, 王铁军, 等. 碱性条件下废轮胎真空热裂解研究[J]. 燃料化学学报, 2005, 33(6): 713-716. |
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. Vacuum pyrolysis of waste tires with basic additives[J]. Journal of Fuel Chemistry and Technology, 2005, 33(6): 713-716. | |
29 | LOPEZ G, OLAZAR M, AGUADO R, et al. Vacuum pyrolysis of waste tires by continuously feeding into a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8990-8997. |
30 | CHAMBERS R W. Scrap-tire feeding and coking process: US4030984[P]. 1977-06-21. |
31 | STELMACHOWSKI M. Conversion of waste rubber to the mixture of hydrocarbons in the reactor with molten metal[J]. Energy Conversion and Management, 2009, 50(7): 1739-1745. |
32 | 赵增立, 李海滨, 吴创之, 等. 生物质等离子体气化研究[J]. 太阳能学报, 2005, 26(4): 468-472. |
ZHAO Zengli, LI Haibin, WU Chuangzhi, et al. The study on the plasma gasification of biomass[J]. Acta Energiae Solaris Sinica, 2005, 26(4): 468-472. | |
33 | HUANG H, TANG L. Pyrolysis treatment of waste tire powder in a capacitively coupled RF plasma reactor[J]. Energy Conversion and Management, 2009, 50(3): 611-617. |
34 | CHANG J S, GU B W, LOOY P C, et al. Thermal plasma pyrolysis of used old tires for production of syngas[J]. Fuel and Energy Abstracts, 1997, 38(1): 41-42. |
35 | 杜长明, 吴焦, 黄娅妮. 等离子体热解气化有机废弃物制氢的关键技术分析[J]. 中国环境科学, 2016, 36(11): 3429-3440. |
DU Changming, WU Jiao, HUANG Yani. Analysis of critical technology for hydrogen production in plasma pyrolysis and gasification of organic waste[J]. China Environmental Science, 2016, 36(11): 3429-3440. | |
36 | ALSALEH A, SATTLER M L. Waste tire pyrolysis: influential parameters and product properties[J]. Current Sustainable/Renewable Energy Reports, 2014, 1(4): 129-135. |
37 | DŨNG N A, WONGKASEMJIT S, JITKARNKA S. Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 300-307. |
38 | KAR T, KELEŞ S, KAYGUSUZ K. Comparison of catalytic and noncatalytic pyrolysis and product yields of some waste biomass species[J]. International Journal of Energy Research, 2019, 43(6): 2032-2043. |
39 | WILLIAMS P T, BRINDLE A J. Aromatic chemicals from the catalytic pyrolysis of scrap tyres[J]. Journal of Analytical and Applied Pyrolysis, 2003, 67(1): 143-164. |
40 | LIDSTRÖM P, TIERNEY J, WATHEY B, et al. Microwave assisted organic synthesis—A review[J]. Tetrahedron, 2001, 57(45): 9225-9283. |
41 | 杨亚青. 废轮胎微波热解过程及产物分布特性试验研究[D]. 济南: 山东大学, 2017. |
YANG Yaqing. Experimental study on process and product distribution of waste tire microwave pyrolysis[D]. Jinan: Shandong University, 2017. | |
42 | UNDRI A, MEINI S, ROSI L, et al. Microwave pyrolysis of polymeric materials: Waste tires treatment and characterization of the value-added products[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 149-158. |
43 | HOSOYA T, KAWAMOTO H, SAKA S. Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 237-246. |
44 | SHAH S A Y, ZEESHAN M, FAROOQ M Z, et al. Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality[J]. Renewable Energy, 2019, 130: 238-244. |
45 | 刘岗. 生物质与废轮胎共热解及催化对液体产物的影响[D]. 太原: 太原理工大学, 2007. |
LIU Gang. Influence of co-pyrolysis and catalysis of biomass with waste tires on the liquid properties[D]. Taiyuan: Taiyuan University of Technology, 2007. | |
46 | 吕全伟, 林顺洪, 李玉, 等. TG-FTIR研究污泥掺混废轮胎共热解特性[J]. 应用化工, 2017, 46(11): 2195-2198, 2203. |
Quanwei LYU, LIN Shunhong, LI Yu, et al. Study on the co-pyrolysis characteristic of sewage sludge and waste tires using TG-FTIR[J]. Applied Chemical Industry, 2017, 46(11): 2195-2198, 2203. | |
47 | 杨金鑫. 废轮胎与煤焦油共热解制备燃料油和炭黑工艺研究[D]. 赣州: 江西理工大学, 2014. |
YANG Jinxin. The copyrolysis process study of waste tire with coal tar for fuel oil and carbon black[D]. Ganzhou: Jiangxi University of Science and Technology, 2014. | |
48 | 刘海兵. 尾煤和废轮胎共热解研究[D]. 北京: 中国矿业大学(北京), 2012. |
LIU Haibing. Research on co-pyrolysis of coal taillings and waste tire[D]. Beijing: China University of Mining & Technology, Beijing, 2012. | |
49 | 刘阳生, 白庆中, 李迎霞, 等. 废轮胎的热解及其产物分析[J]. 环境科学, 2000, 21(6): 85-88. |
LIU Yangsheng, BAI Qingzhong, LI Yingxia, et al. The waste tire pyrolysis and its yields analysis[J]. Chinese Journal of Enviromental Science, 2000, 21(6): 85-88. | |
50 | 钟浩文, 杨启容, 姚尔人, 等. 丁苯橡胶热解过程的分子动力学研究[J]. 青岛大学学报(工程技术版), 2019, 34(2): 95-100. |
ZHONG Haowen, YANG Qirong, YAO Erren, et al. Molecular dynamics study on the pyrolysis of styrene butadiene rubber[J]. Journal of Qingdao University (Engineering & Technology Edition), 2019, 34(2): 95-100. | |
51 | 付兴民, 张玉秀, 刘海兵, 等. 初始温度对废轮胎热解的影响[J]. 环境工程学报, 2013, 7(5): 1907-1912. |
FU Xingmin, ZHANG Yuxiu, LIU Haibing, et al. Influences of initial temperature on pyrolysis of scrap tire[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1907-1912. | |
52 | 陈汉平, 隋海清, 王贤华, 等. 废轮胎热解多联产过程中温度对产物品质的影响[J]. 中国电机工程学报, 2012, 32(23): 119-125, 159. |
CHEN Hanping, SUI Haiqing, WANG Xianhua, et al. Effects of temperature on the product property during multi-cogeneration based on waste tyre pyrolysis[J]. Proceedings of the CSEE, 2012, 32(23): 119-125, 159. | |
53 | 王慧. 废轮胎热解油的资源化利用研究[D]. 上海: 华东理工大学, 2011. |
WANG Hui. Research on utilization of used tire pyrolysis oil[D]. Shanghai: East China University of Science and Technology, 2011. | |
54 | 张志霄, 池涌, 高雅丽, 等. 废轮胎热解油的成分分析及二次热解反应[J]. 工程热物理学报, 2005, 26(1): 159-162. |
ZHANG Zhixiao, CHI Yong, GAO Yali, et al. Characteristics of pyrolytic oil derived from pilot-scale pyrolysis of scrap tires and the secondary pyrolysis[J]. Journal of Engineering Thermophysics, 2005, 26(1): 159-162. | |
55 | NISAR J, ALI G, ULLAH N, et al. Pyrolysis of waste tire rubber: Influence of temperature on pyrolysates yield[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3469-3473. |
56 | SEIFALI ABBAS-ABADI M, NEKOOMANESH HAGHIGHI M. The consideration of different effective zeolite based catalysts and heating rate on the pyrolysis of styrene butadiene rubber (SBR) in a stirred reactor[J]. Energy & Fuels, 2017, 31(11): 12358-12363. |
57 | MKHIZE N M, VAN DER GRYP P, DANON B, et al. Effect of temperature and heating rate on limonene production from waste tyre pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 314-320. |
58 | 张义烽, 薛勇, 蒋东燕, 等. 粒径、升温速率及催化剂对废轮胎胶粉热解特性的影响[J]. 西南科技大学学报, 2013, 28(1): 65-69. |
ZHANG Yifeng, XUE Yong, JIANG Dongyan, et al. Influence of tire powder's pyrolysis by particle size/heating rate and catalyst and its thermogravimetric analysis[J]. Journal of Southwest University of Science and Technology, 2013, 28(1): 65-69. | |
59 | 邓飞虎, 王黎. 轮胎粒径对热解产物的影响[J]. 应用化工, 2019, 48(6): 1382-1384. |
DENG Feihu, WANG Li. Influences of tire size on pyrolysis products[J]. Applied Chemical Industry, 2019, 48(6): 1382-1384. | |
60 | 蒋智慧, 刘洋, 宋永猛, 等. 废旧轮胎热解及热解产物研究展望[J]. 化工进展, 2021, 40(1): 515-525. |
JIANG Zhihui, LIU Yang, SONG Yongmeng, et al. Review of pyrolysis for waste tires and research prospects of pyrolysis products[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 515-525. | |
61 | MA Sijie, LEONG H, HE Limo, et al. Effects of pressure and residence time on limonene production in waste tires pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 2020, 151: 104899. |
62 | KORDOGHLI S, PARASCHIV M, KUNCSER R, et al. Catalysts’ influence on thermochemical decomposition of waste tires[J]. Environmental Progress & Sustainable Energy, 2017, 36(5): 1560-1567. |
63 | 帅坤, 闫雨瑗, 崔小龙, 等. 废轮胎热解催化剂及工艺研究进展[J]. 过程工程学报, 2017, 17(1): 193-200. |
SHUAI Kun, YAN Yuyuan, CUI Xiaolong, et al. Research advances in pyrolysis processes and catalysts of waste tires[J]. The Chinese Journal of Process Engineering, 2017, 17(1): 193-200. | |
64 | SALMASI S S Z, ABBAS-ABADI M S, HAGHIGHI M N, et al. The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber[J]. Fuel, 2015, 160: 544-548. |
65 | SHAH J, JAN M R, MABOOD F. Recovery of value-added products from the catalytic pyrolysis of waste tyre[J]. Energy Conversion and Management, 2009, 50(4): 991-994. |
66 | 张兴华, 常杰, 王铁军, 等. 真空条件下金属氧化物催化废轮胎热解研究[J]. 能源工程, 2006(1): 41-45. |
ZHANG Xinghua, CHANG Jie, WANG Tiejun, et al. A study on metal-oxide catalyzed pyrolysis of waste tires under vacuum conditions[J]. Energy Engineering, 2006(1): 41-45. | |
67 | ZHANG Yeshui, WU Chunfei, NAHIL M A, et al. Pyrolysis–catalytic reforming/gasification of waste tires for production of carbon nanotubes and hydrogen[J]. Energy & Fuels, 2015, 29(5): 3328-3334. |
68 | PORTOFINO S, CASU S, IOVANE P, et al. Optimizing H2 production from waste tires via combined steam gasification and catalytic reforming[J]. Energy & Fuels, 2011, 25(5): 2232-2241. |
69 | ROFIQUL ISLAM M, HANIU H, RAFIQUL ALAM BEG M. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties[J]. Fuel, 2008, 87(13/14): 3112-3122. |
70 | DE MARCO RODRIGUEZ I, LARESGOITI M F, CABRERO M A, et al. Pyrolysis of scrap tyres[J]. Fuel Processing Technology, 2001, 72(1): 9-22. |
71 | KARAGÖZ M, AĞBULUT Ü, SARıDEMIR S. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines[J]. Fuel, 2020, 275: 117844. |
72 | MURUGAN S, RAMASWAMY M C, NAGARAJAN G. The use of tyre pyrolysis oil in diesel engines[J]. Waste Management, 2008, 28(12): 2743-2749. |
73 | 徐宗平, 郭庆民. 废轮胎热解回收中的废气综合利用[J]. 再生资源与循环经济, 2017, 10(4): 34-37. |
XU Zongping, GUO Qingmin. The multipurpose utilization of waste gas in waste tire pyrolysis recycling[J]. Recyclable Resources and Circular Economy, 2017, 10(4): 34-37. | |
74 | XU Junqing, YU Jiaxue, XU Jianglin, et al. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis[J]. Science of the Total Environment, 2020, 742: 140235. |
75 | 朱小涛. 表面改性活性炭对土壤中铅的吸附与稳定性能研究[D]. 武汉: 武汉科技大学, 2016. |
ZHU Xiaotao. Effect of surface modified activated carbon on adsorption and stabilization of lead in soil[D]. Wuhan: Wuhan University of Science and Technology, 2016. | |
76 | 吴英亮. 化学药品活化法生产活性炭(中)[J]. 生意通, 2011(4):116-120. |
WU Yingliang. Production of activated carbon by chemical activation method[J]. Business News, 2011(4):116-120. | |
77 | TANG L, HUANG H. Thermal plasma pyrolysis of used tires for carbon black recovery[J]. Journal of Materials Science, 2005, 40(14): 3817-3819. |
78 | 沈伯雄, 鲁锋, 朱国营, 等. 废轮胎热解炭黑及其改性后的特性研究[J]. 环境工程学报, 2010, 4(7): 1615-1618. |
SHEN Boxiong, LU Feng, ZHU Guoying, et al. Characterization of modified and original carbon blacks from pyrolysis of scrap tires[J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1615-1618. | |
79 | ROY C, CHAALA A, DARMSTADT H. The vacuum pyrolysis of used tires: end-uses for oil and carbon black products[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1/2): 201-221. |
80 | 刘俊, 陈云嫩, 聂锦霞. 废轮胎热解炭黑制备活性炭及处理染料废水[J]. 中国环境科学, 2018, 38(10): 3795-3800. |
LIU Jun, CHEN Yunnen, NIE Jinxia. Preparation of activated carbon from waste tire pyrolysis carbon black and its treatment of dyeing wastewater[J]. China Environmental Science, 2018, 38(10): 3795-3800. | |
81 | OGASAWARA S, KURODA M, WAKAO N. Preparation of activated carbon by thermal decomposition of used automotive tires[J]. Industrial & Engineering Chemistry Research, 1987, 26(12): 2552-2556. |
82 | SUSA D, HAYDARY J. Sulphur distribution in the products of waste tire pyrolysis[J]. Chemical Papers, 2013, 67(12): 1521-1526. |
83 | LI Wei, HUANG Chuanfeng, LI Dapeng, et al. Derived oil production by catalytic pyrolysis of scrap tires[J]. Chinese Journal of Catalysis, 2016, 37(4): 526-532. |
84 | 金余其, 陆王琳, 池涌, 等. 废轮胎热解油加氢精制硫氮脱除特性研究[J]. 燃料化学学报, 2007, 35(6): 772-776. |
JIN Yuqi, LU Wanglin, CHI Yong, et al. Research on sulfur and nitrogen removal characteristics of scrap-tire pyrolytic oil by hydrofining[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 772-776. | |
85 | 吴丹, 周洁, 俞天明, 等. 废轮胎热解衍生油非加氢脱硫[J]. 环境工程学报, 2013, 7(8): 3153-3157. |
WU Dan, ZHOU Jie, YU Tianming, et al. Non-hydrogenation desulfurization of derived pyrolytic oil from scrap tires[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3153-3157. | |
86 | 岳敏, 谷学新, 邹洪, 等. 多环芳烃的危害与防治[J]. 首都师范大学学报(自然科学版), 2003, 24(3): 40-44, 31. |
YUE Min, GU Xuexin, ZOU Hong, et al. Killer of health—polycyclic aromatic hydrocarbons[J]. Journal of Capital Normal University, 2003, 24(3): 40-44, 31. | |
87 | CHEN S J, SU H B, CHANG J E, et al. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires[J]. Atmospheric Environment, 2007, 41(6): 1209-1220. |
88 | LEVENDIS Y A, ATAL A, CARLSON J B. On the correlation of CO and PAH emissions from the combustion of pulverized coal and waste tires[J]. Environmental Science & Technology, 1998, 32(23): 3767-3777. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[4] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[5] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[6] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[7] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[8] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[9] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[10] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[11] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[12] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[13] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
[14] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[15] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |