Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (8): 4047-4056.DOI: 10.16085/j.issn.1000-6613.2021-2152
• Chemical processes and equipment • Previous Articles Next Articles
GUO Fanhui1,2(), WU Jianjun1,2(
), ZHANG Haijun1,2(
), GUO Yang1, LIU Hu1, ZHANG Yixin2
Received:
2021-10-19
Revised:
2021-11-27
Online:
2022-08-22
Published:
2022-08-25
Contact:
WU Jianjun,ZHANG Haijun
郭凡辉1,2(), 武建军1,2(
), 张海军1,2(
), 郭旸1, 刘虎1, 张一昕2
通讯作者:
武建军,张海军
作者简介:
郭凡辉(1992—),男,博士,讲师,研究方向为气化细渣脱水及组分资源化利用。E-mail:基金资助:
CLC Number:
GUO Fanhui, WU Jianjun, ZHANG Haijun, GUO Yang, LIU Hu, ZHANG Yixin. Coal gasification fine slag vacuum dewatering by ceramic membrane and numerical simulation[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4047-4056.
郭凡辉, 武建军, 张海军, 郭旸, 刘虎, 张一昕. 煤气化细渣陶瓷膜真空脱水试验与数值模拟[J]. 化工进展, 2022, 41(8): 4047-4056.
名称 | 悬浮物含量/mg·L-1 | 浊度/NTU | pH |
---|---|---|---|
工业用水标准指标 | ≤30 | ≤ 5 | 6.5~9 |
滤液指标 | 6~16 | 2.95 | 8.3~8.96 |
名称 | 悬浮物含量/mg·L-1 | 浊度/NTU | pH |
---|---|---|---|
工业用水标准指标 | ≤30 | ≤ 5 | 6.5~9 |
滤液指标 | 6~16 | 2.95 | 8.3~8.96 |
名称 | 孔隙率/% | 厚度/mm | 凹槽平均占比/% | 总体积/mm3 | 总孔隙率/% |
---|---|---|---|---|---|
涂层 | 41.46 | 0.06 | — | 600 | 34.71 |
基材 | 34.65 | 6.5 | 41 | 73200 | — |
名称 | 孔隙率/% | 厚度/mm | 凹槽平均占比/% | 总体积/mm3 | 总孔隙率/% |
---|---|---|---|---|---|
涂层 | 41.46 | 0.06 | — | 600 | 34.71 |
基材 | 34.65 | 6.5 | 41 | 73200 | — |
名称 | 过滤板吸水过程 | 气化细渣滤饼吸水过程 | 真空脱水过程 |
---|---|---|---|
过滤板 | 多孔介质模型 | 多孔介质模型 | 多孔介质模型 |
滤饼 | 无 | 多孔介质模型 | 多孔介质模型 |
名称 | 过滤板吸水过程 | 气化细渣滤饼吸水过程 | 真空脱水过程 |
---|---|---|---|
过滤板 | 多孔介质模型 | 多孔介质模型 | 多孔介质模型 |
滤饼 | 无 | 多孔介质模型 | 多孔介质模型 |
孔隙率/% | 黏性阻力 系数/m-2 | 惯性阻力 系数/m-1 | 出口水流量/g·s-1 | |
---|---|---|---|---|
模拟值 | 实验值 | |||
34.71 | 1.85×1012 | 7.295×108 | 35.08 | 35.21 |
孔隙率/% | 黏性阻力 系数/m-2 | 惯性阻力 系数/m-1 | 出口水流量/g·s-1 | |
---|---|---|---|---|
模拟值 | 实验值 | |||
34.71 | 1.85×1012 | 7.295×108 | 35.08 | 35.21 |
气化细渣滤饼厚度 /mm | 真空力场作用时间 /s | 气化细渣滤饼含水量 /% | 真空度 /MPa |
---|---|---|---|
3.0 | 5 | 42.28 | 0.084 |
10 | 42.93 | 0.087 | |
15 | 41.74 | 0.090 | |
20 | 42.68 | 0.091 | |
24 | 41.84 | 0.095 | |
4.5 | 5 | 46.85 | 0.087 |
10 | 45.52 | 0.090 | |
15 | 44.61 | 0.092 | |
24 | 43.58 | 0.095 | |
5.5 | 5 | 49.44 | 0.090 |
10 | 47.25 | 0.092 | |
15 | 45.03 | 0.094 | |
20 | 44.13 | 0.095 | |
24 | 44.12 | 0.095 | |
6.25 | 5 | 51.26 | 0.091 |
10 | 49.36 | 0.093 | |
15 | 47.61 | 0.095 | |
20 | 47.35 | 0.096 | |
24 | 46.08 | 0.096 |
气化细渣滤饼厚度 /mm | 真空力场作用时间 /s | 气化细渣滤饼含水量 /% | 真空度 /MPa |
---|---|---|---|
3.0 | 5 | 42.28 | 0.084 |
10 | 42.93 | 0.087 | |
15 | 41.74 | 0.090 | |
20 | 42.68 | 0.091 | |
24 | 41.84 | 0.095 | |
4.5 | 5 | 46.85 | 0.087 |
10 | 45.52 | 0.090 | |
15 | 44.61 | 0.092 | |
24 | 43.58 | 0.095 | |
5.5 | 5 | 49.44 | 0.090 |
10 | 47.25 | 0.092 | |
15 | 45.03 | 0.094 | |
20 | 44.13 | 0.095 | |
24 | 44.12 | 0.095 | |
6.25 | 5 | 51.26 | 0.091 |
10 | 49.36 | 0.093 | |
15 | 47.61 | 0.095 | |
20 | 47.35 | 0.096 | |
24 | 46.08 | 0.096 |
1 | 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. |
QU Jiangshan, ZHANG Jianbo, SUN Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. | |
2 | 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. |
XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960. | |
3 | 王冀, 孔令学, 白进, 等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术, 2021, 27(1): 181-192. |
WANG Ji, KONG Lingxue, BAI Jin, et al. Research progress on the effect of residual carbon in coal gasification slag on ash and slag flow property[J]. Clean Coal Technology, 2021, 27(1): 181-192. | |
4 | 刘阳, 吴秀章, 刘永健, 等. 煤制天然气过程全局能量集成优化[J]. 化工进展, 2021, 40(7): 3719-3727. |
LIU Yang, WU Xiuzhang, LIU Yongjian, et al. Global heat integration and optimization of coal to natural gas process[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3719-3727. | |
5 | GUO Fanhui, MIAO Zekai, GUO Zhenkun, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043. |
6 | GUO Fanhui, ZHAO Xu, GUO Yang, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148. |
7 | YUAN Ning, ZHAO Aijing, HU Zekai, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review[J]. Chemosphere, 2022, 287: 132227. |
8 | 吕飞勇, 初茉, 易浩然, 等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展, 2022, 41(5): 2372-2378. |
Feiyong LYU, CHU Mo, YI Haoran, et al. Distribution characteristics of magnetic ash particles in gasification ash slag of different particle sizes[J]. Chemical Industry Progress, 2022, 41(5): 2372-2378. | |
9 | GUO Fanhui, GUO Yang, ZHANG Yixin, et al. Dewatering mechanism of gasification fine slag by coupled mechanical force fields and its potential guidance for efficient dewatering process[J]. Fuel Processing Technology, 2020, 205: 106459. |
10 | GUO Fanhui, LIU Hu, GUO Yang, et al. Occurrence modes of water in gasification fine slag filter cake and drying behavior analysis—A case study[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104585. |
11 | 李慧泽, 董连平, 鲍卫仁, 等. 基于视密度的煤气化渣水介质旋流炭-灰分离[J]. 化工进展, 2021, 40(3): 1344-1353. |
LI Huize, DONG Lianping, BAO Weiren, et al. Carbon-ash separation of coal gasification slag in swirling water based on apparent density[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1344-1353. | |
12 | 闵凡飞, 陈军, 刘令云. 难沉降煤泥水处理新技术研究现状及发展趋势[J]. 选煤技术, 2018(5): 4-9. |
MIN Fanfei, CHEN Jun, LIU Lingyun. State-of-the-art and developing trend of the new technologies for treating difficult-to-settle coal slurry[J]. Coal Preparation Technology, 2018(5): 4-9. | |
13 | 董宪姝. 煤泥水处理技术研究现状及发展趋势[J]. 选煤技术, 2018(3): 1-8. |
DONG Xianshu. State-of-the-art and developing trend of coal slurry treatment technology[J]. Coal Preparation Technology, 2018(3): 1-8. | |
14 | 张一昕, 郭旸, 王如梦, 等. 宁东煤气化细渣及其碳灰分离产物物理化学性质研究[J]. 煤炭学报. DOI: 10.13225/j.cnki.jccs.FX21.0892 . |
ZHANG Yixin, GUO Yang, WANG Rumeng, et al. Study on the physical and chemical properties of Ningdong coal gasification fine slag and its carbon ash separation products [J]. Journal of China Coal Society. DOI: 10.13225/j.cnki.jccs.FX21.0892 . | |
15 | HUTTUNEN M, NYGREN L, KINNARINEN T, et al. Specific energy consumption of vacuum filtration: experimental evaluation using a pilot-scale horizontal belt filter[J]. Drying Technology, 2020, 38(4): 460-475. |
16 | 黄文锋, 余标飞, 豆伟. 带式真空过滤机在梁北选煤厂浮选精煤脱水工艺中的应用[J]. 选煤技术, 2010(3): 31-34. |
HUANG Wenfeng, YU Biaofei, DOU Wei. Application of belt vacuum filter in the dewatering process of flotation clean coal in Liangbei Coal Preparation Plant[J]. Coal Preparation Technology, 2010(3): 31-34. | |
17 | 饶天曦, 马钊, 张庆龙, 等. 神宁炉细灰掺烧气流床锅炉可行性和经济性分析[J]. 化工管理, 2019(21): 7-8. |
RAO Tianxi, MA Zhao, ZHANG Qinglong, et al. Feasibility and economic analysis of Shenning furnace’s fine ash blended entrained bed boiler[J]. Chemical Enterprise Management, 2019(21): 7-8. | |
18 | 曾琦. 真空带式微振泥浆筛脱水机理分析[D]. 荆州: 长江大学, 2017. |
ZENG Qi. Analysis on dewatering principle of the vacuum belt micro-vibration mud screen[D]. Jingzhou: Yangtze University, 2017. | |
19 | 朱志楠. 茶鲜叶离心连续脱水过程数值模拟及设备参数设计与优化[D]. 杭州: 浙江工业大学, 2017. |
ZHU Zhinan. Numerical simulation of centrifugal continuous dewatering process and design and optimization of equipment parameters[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
20 | SJÖSTRAND B, NILSSON L, ULLSTEN H, et al. Numerical model of water removal and air penetration during vacuum dewatering[J]. Drying Technology, 2021, 39(10): 1349-1358. |
21 | 谢杰, 马松勃. 陶瓷过滤机应用于炉渣选矿尾矿脱水的实践与探索[J]. 有色矿冶, 2014, 30(1): 25-27. |
XIE Jie, MA Songbo. The practice and explore of dewatering slag tailings by using ceramic filter[J]. Non-Ferrous Mining and Metallurgy, 2014, 30(1): 25-27. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | SUN Luqin, LU Huixia, WANG Jianyou. Separation of lysozyme from egg white by electrodialysis with ultrafiltration membrane(EDUF) process [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2262-2271. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 412
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |