Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2604-2614.DOI: 10.16085/j.issn.1000-6613.2021-1115
• Materials science and technology • Previous Articles Next Articles
CHEN Bo1(), CHEN Weixiang1, TANG Lirong1,2(), HONG Qiqi1, YAN Xue2, JIN Jiangtao1, LYU Rixin3, HUANG Biao1
Received:
2021-05-26
Revised:
2021-07-25
Online:
2022-05-24
Published:
2022-05-05
Contact:
TANG Lirong
陈博1(), 陈伟香1, 唐丽荣1,2(), 洪祺祺1, 严雪2, 靳江涛1, 吕日新3, 黄彪1
通讯作者:
唐丽荣
作者简介:
陈博(1997—),男,硕士研究生,研究方向为生物质化学与材料工程。E-mail:基金资助:
CLC Number:
CHEN Bo, CHEN Weixiang, TANG Lirong, HONG Qiqi, YAN Xue, JIN Jiangtao, LYU Rixin, HUANG Biao. A highly sensitivity humidity sensor based on nitrocellulose nanocrystals/agar[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2604-2614.
陈博, 陈伟香, 唐丽荣, 洪祺祺, 严雪, 靳江涛, 吕日新, 黄彪. 基于硝化纳米纤维素/琼脂的高灵敏度湿度传感器[J]. 化工进展, 2022, 41(5): 2604-2614.
编号 | 频率变化值/Hz | 薄膜质量/μg | 敏感膜质量的标准偏差/% | 灵敏度/Hz·%-1 | 平均膜厚/nm | 膜厚的标准偏差/% |
---|---|---|---|---|---|---|
QCM-a | -7365 | 1.023 | 1.42 | 21.56 | 174 | 19.60 |
QCM-b | -14744 | 2.049 | 1.06 | 32.54 | 216 | 10.20 |
QCM-c | -22374 | 3.109 | 2.59 | 58.17 | 320 | 17.89 |
QCM-d | -29538 | 4.104 | 1.23 | 59.68 | 358 | 13.27 |
QCM-e | -36713 | 5.101 | 2.69 | 82.76 | 486 | 24.98 |
编号 | 频率变化值/Hz | 薄膜质量/μg | 敏感膜质量的标准偏差/% | 灵敏度/Hz·%-1 | 平均膜厚/nm | 膜厚的标准偏差/% |
---|---|---|---|---|---|---|
QCM-a | -7365 | 1.023 | 1.42 | 21.56 | 174 | 19.60 |
QCM-b | -14744 | 2.049 | 1.06 | 32.54 | 216 | 10.20 |
QCM-c | -22374 | 3.109 | 2.59 | 58.17 | 320 | 17.89 |
QCM-d | -29538 | 4.104 | 1.23 | 59.68 | 358 | 13.27 |
QCM-e | -36713 | 5.101 | 2.69 | 82.76 | 486 | 24.98 |
材料 | 输出信号 | 测试范围/%RH | 灵敏度 | 响应/恢复时间/s | 文献 |
---|---|---|---|---|---|
Chitosan | 波长 | 20~95 | 0.13nm·%RH | 0.38 | Chen等[ |
GQDs-PVA | 波长 | 11.3~81.34 | 0.11725nm·%RH | — | Zhao等[ |
NFC/CNT | 电流 | 11~95 | 69.9%(?I/I0) | 330/377 | Zhu等[ |
GO/graphene,PEBOT:PSS/graphene,AC/ graphene | 电阻 | 12~97 | 0.0321 | 31/72 | Pang等[ |
PANI/TaS2 | 电阻 | 11~97 | — | 36/49 | Manjunatha等[ |
CNCs | 电阻 | 4~95 | 0.16%RH | 1.9/1.5 | Wu等[ |
PDA@CNC/GO | 频率 | 11.3~97.39 | 5.466×10-6 | 11/4(11.3%~48%RH) 37/5(48%~97.39%RH) | Yao等[ |
Paper | 频率 | 11~90 | 14.5%(?f/f0) | 240/360 | Yuan等[ |
PILs/paper | 阻抗 | 11~95 | 961.3(Z0/Zg) | 25/113 | Zhao等[ |
CKF | 电阻 | 11.3~97.3 | — | 6.0/10.8 | Wang等[ |
NCNCs/Agar | 频率 | 11~97 | 82.76Hz/%RH(QCM-e) | 17/5(11%~84%RH) | 本文 |
材料 | 输出信号 | 测试范围/%RH | 灵敏度 | 响应/恢复时间/s | 文献 |
---|---|---|---|---|---|
Chitosan | 波长 | 20~95 | 0.13nm·%RH | 0.38 | Chen等[ |
GQDs-PVA | 波长 | 11.3~81.34 | 0.11725nm·%RH | — | Zhao等[ |
NFC/CNT | 电流 | 11~95 | 69.9%(?I/I0) | 330/377 | Zhu等[ |
GO/graphene,PEBOT:PSS/graphene,AC/ graphene | 电阻 | 12~97 | 0.0321 | 31/72 | Pang等[ |
PANI/TaS2 | 电阻 | 11~97 | — | 36/49 | Manjunatha等[ |
CNCs | 电阻 | 4~95 | 0.16%RH | 1.9/1.5 | Wu等[ |
PDA@CNC/GO | 频率 | 11.3~97.39 | 5.466×10-6 | 11/4(11.3%~48%RH) 37/5(48%~97.39%RH) | Yao等[ |
Paper | 频率 | 11~90 | 14.5%(?f/f0) | 240/360 | Yuan等[ |
PILs/paper | 阻抗 | 11~95 | 961.3(Z0/Zg) | 25/113 | Zhao等[ |
CKF | 电阻 | 11.3~97.3 | — | 6.0/10.8 | Wang等[ |
NCNCs/Agar | 频率 | 11~97 | 82.76Hz/%RH(QCM-e) | 17/5(11%~84%RH) | 本文 |
1 | WANG D Y, HUANG Y, CAI W T, et al. Functionalized multi-wall carbon nanotubes/silicone rubber composite as capacitive humidity sensor[J]. Journal of Applied Polymer Science, 2014, 131(11): 40342. |
2 | FARAHANI H, WAGIRAN R, HAMIDON M N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review[J]. Sensors, 2014, 14(5): 7881-7939. |
3 | DAI J X, ZHANG T, ZHAO H R, et al. Preparation of organic-inorganic hybrid polymers and their humidity sensing properties[J]. Sensors and Actuators B: Chemical, 2017, 242: 1108-1114. |
4 | 赵晨. 基于改性碳纳米管的QCM型湿度传感器的研究[D]. 长春: 吉林大学, 2018. |
ZHAO Chen. Study on QCM humidity sensor based on modified carbon nanotubes[D]. Changchun: Jilin University, 2018. | |
5 | LIN J B, GAO N B, LIU J M, et al. Superhydrophilic Cu(OH)2 nanowire-based QCM transducer with self-healing ability for humidity detection[J]. Journal of Materials Chemistry A, 2019, 7(15): 9068-9077. |
6 | MANNELLI I, MINUNNI M, TOMBELLI S, et al. Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection[J]. Biosensors and Bioelectronics, 2003, 18(2/3): 129-140. |
7 | WU Z Q, CHEN X D, ZHU S B, et al. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite[J]. Sensors and Actuators B: Chemical, 2013, 178: 485-493. |
8 | LAHRECH K, SAFOUANE A, PEYRELLASSE J. Sol state formation and melting of agar gels rheological study[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 358(1): 205-211. |
9 | 李亚男, 吴建美, 宋登鹏, 等. 纤维素/琼脂糖复合膜的制备、表征及其形状记忆性能研究[J]. 功能材料, 2021, 52(3): 3086-3091, 3097. |
LI Yanan, WU Jianmei, SONG Dengpeng, et al. Preparation, characterization and shape memory properties of cellulose/agarose composite film[J]. Journal of Functional Materials, 2021, 52(3): 3086-3091, 3097. | |
10 | LI H J, ZHENG H, TAN Y J, et al. Development of an ultrastretchable double-network hydrogel for flexible strain sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 12814-12823. |
11 | HOU W W, SHENG N N, ZHANG X H, et al. Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors[J]. Carbohydrate Polymers, 2019, 211: 322-328. |
12 | YANG B W, YUAN W Z. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16765-16775. |
13 | CAO Y, MORRISSEY T G, ACOME E, et al. A transparent, self-healing, highly stretchable ionic conductor[J]. Advanced Materials, 2017, 29(10): 1605099. |
14 | CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30): 4171-4176. |
15 | WANG J L, LIU Y, SU S H, et al. Ultrasensitive wearable strain sensors of 3D printing tough and conductive hydrogels[J]. Polymers, 2019, 11(11): 1873. |
16 | PRESTI D LO, MASSARONI C, PIEMONTE V, et al. Agar-coated fiber Bragg grating sensor for relative humidity measurements: influence of coating thickness and polymer concentration[J]. IEEE Sensors Journal, 2019, 19(9): 3335-3342. |
17 | BASIRI S, MEHDINIA A, JABBARI A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe2+, hydrogen peroxide, and glucose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 138-146. |
18 | YANG J, XIA Y F, XU P, et al. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation[J]. Cellulose, 2018, 25(6): 3533-3544. |
19 | WHITE R J, BRUN N, BUDARIN V L, et al. Always look on the “light” side of life: sustainable carbon aerogels[J]. ChemSusChem, 2014, 7(3): 670-689. |
20 | BARANDUN G, SOPRANI M, NAFICY S, et al. Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases[J]. ACS Sensors, 2019, 4(6): 1662-1669. |
21 | ZHOU J, BUTCHOSA N, JAYAWARDENA H S N, et al. Synthesis of multifunctional cellulose nanocrystals for lectin recognition and bacterial imaging[J]. Biomacromolecules, 2015, 16(4): 1426-1432. |
22 | ESMAEILI C, ABDI M M, MATHEW A P, et al. Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose[J]. Sensors, 2015, 15(10): 24681-24697. |
23 | SADASIVUNI K K, KAFY A, ZHAI L D, et al. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing[J]. Small, 2015, 11(8): 994-1002. |
24 | ZHENG Z, TANG C X, YEOW J T W. A high-performance CMUT humidity sensor based on cellulose nanocrystal sensing film[J]. Sensors and Actuators B: Chemical, 2020, 320: 128596. |
25 | YANG H, CHOIS E, KIM D, et al. Color-spectrum-broadened ductile cellulose films for vapor-pH-responsive colorimetric sensors[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 590-596. |
26 | YAO Y, HUANG X H, ZHANG B Y, et al. Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure[J]. Sensors and Actuators B: Chemical, 2020, 302: 127192. |
27 | WANG D C, YU H Y, QI D M, et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24435-24446. |
28 | TANG L R, CHEN W X, CHEN B, et al. Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals[J]. Sensors and Actuators B: Chemical, 2021, 327: 128944. |
29 | CHEN L H, LI T, CHAN C C, et al. Chitosan based fiber-optic Fabry-Perot humidity sensor[J]. Sensors and Actuators B: Chemical, 2012, 169: 167-172. |
30 | ZHAO Y, TONG R J, CHEN M Q, et al. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA[J]. Sensors and Actuators B: Chemical, 2019, 284: 96-102. |
31 | ZHU P H, LIU Y, FANG Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14): 4834-4842. |
32 | PANG Y, JIAN J M, TU T, et al. Wearable humidity sensor based on porous graphene network for respiration monitoring[J]. Biosensors and Bioelectronics, 2018, 116: 123-129. |
33 | MANJUNATHA S, MACHAPPA T, RAVIKIRAN Y T, et al. Polyaniline based stable humidity sensor operable at room temperature[J]. Physica B: Condensed Matter, 2019, 561: 170-178. |
34 | WU J, SUN Y M, WU Z X, et al. Carbon nanocoil-based fast-response and flexible humidity sensor for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4242-4251. |
35 | YAO Y, HUANG X H, CHEN Q, et al. High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite[J]. Nanomaterials, 2020, 10(11): 2210. |
36 | YUAN Q, GENG W C, LI N, et al. Study on humidity sensitive property of K2CO3-SBA-15 composites[J]. Applied Surface Science, 2009, 256(1): 280-283. |
37 | ZHAO H R, LIN X Z, QI R R, et al. A composite structure of in situ cross-linked poly(ionic liquid)s and paper for humidity-monitoring applications[J]. IEEE Sensors Journal, 2019, 19(3): 833-837. |
38 | WANG Y, ZHANG L N, ZHOU J P, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7631-7638. |
[1] | YANG Bin, WANG Xiaodong, WANG Yan, YI Guiyun, WANG Tielang, SHI Chuang, ZHANG Zhanying. Preparation of nano-Pt/ZnO heterostructures and gas sensitive properties [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4817-4827. |
[2] | LUO Zhenmin, LIU Lu, SU Bin, SONG Fangzhi. Effect of inert gas on ethylene explosion limit parameters and kinetic characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4653-4661. |
[3] | DUAN Boyan, NI Hui, LI Zhipeng, JIANG Zedong, ZHU Yanbing, LI Qingbiao. Process optimization and design of eliminating domestic agar phosphate precipitation [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3824-3831. |
[4] | CHEN Bo, HONG Qiqi, TANG Lirong, ZHANG Weichuan, CHEN Weixiang, LI Xing, LYU Rixin, HUANG Biao. Humidity sensitive properties of lead-free copper-based perovskite Cs2CuBr4 [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3162-3169. |
[5] | LI Chunli, TIAN Xin, LI Hao, HU Yuqi. Research progress on distillation process in high boiling point and thermal sensitive system [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1704-1714. |
[6] | WEN Jiaxin, ZHANG Xin, LIU Yunxia, HE Zhiqiang, QU Qichao. Preparation and performance of smart anti-corrosion coating based on nanocontainers of BTA@MSNs-PAA [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2685-2694. |
[7] | KAN Yan, SUN Qian, LI Xiaoqiang, GAO Dekang. Colorimetric humidity sensor based on CoCl2/cellulose paper [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2703-2709. |
[8] | ZHENG Zhihang, LI Qian, ZHANG Jiayuan, ZHOU Haoyu. Simulation of industrial Shell entrained flow bed by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2152-2160. |
[9] | LIU Zuoren, XU Chuanlong, TANG Guanghua. Simulation and sensitivity analysis of flue gas environmental protection island system in coal-fired unit based on ASPEN Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6564-6573. |
[10] | CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. |
[11] | Yurou LI, Xiaohu GE, Yueqiang CAO, Xuezhi DUAN, Xinggui ZHOU, Weikang YUAN. Selective hydrogenation of acetylene: structure sensitivity of catalysts and precise regulation [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4845-4855. |
[12] | LIU Zhonghui, YU Kuangshi, ZHANG Haixia, ZHU Zhiping. Simulation of industrial circulating fluidized bed gasifier by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1709-1717. |
[13] | GUO Ruiwei, BAI Shaoling, YAO Yuan, WANG Yaqi, ZHANG Jianhua. Photosensitive drug delivery emulsion based on amphiphilic block copolymer of phenyl vinyl ketone [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 283-291. |
[14] | LI Ying, ZHANG Hongxing, YAN Kele, HU Xuyao, JIA Runzhong, ZOU Bing, XIAO Anshan. Progress of chemical sensors based on metal-organic frameworks (MOFs) [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1316-1323. |
[15] | DONG Fenglian, WANG Hua, LIU Hualin, WANG Zhe, JU Shengtao. New generation of planning optimization system oriented to collaborative application [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 1986-1993. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |