Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1594-1607.DOI: 10.16085/j.issn.1000-6613.2021-2278
• Chemical energy storage • Previous Articles Next Articles
LUO Mingyun1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2()
Received:
2021-11-08
Revised:
2021-12-25
Online:
2022-03-28
Published:
2022-03-23
Contact:
ZHANG Zhengguo
罗明昀1(), 凌子夜1,2, 方晓明1,2, 张正国1,2()
通讯作者:
张正国
作者简介:
罗明昀(1997—),男,博士研究生,研究方向为相变储热材料及电池热管理。E-mail:基金资助:
CLC Number:
LUO Mingyun, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607.
罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2278
1 | YU L, LI Y P. A flexible-possibilistic stochastic programming method for planning municipal-scale energy system through introducing renewable energies and electric vehicles[J]. Journal of Cleaner Production, 2019, 207: 772-787. |
2 | KABATEPE B, TÜRKAY M. A bi-criteria optimization model to analyze the impacts of electric vehicles on costs and emissions[J]. Computers & Chemical Engineering, 2017, 102: 156-168. |
3 | YOUNG J, BRANS M. Analysis of factors affecting a shift in a local energy system towards 100% renewable energy community[J]. Journal of Cleaner Production, 2017, 169: 117-124. |
4 | SHEN Z G, CHEN S, LIU X, et al. A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111301. |
5 | RAMADASS P, HARAN B L, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance[J]. Journal of Power Sources, 2002, 112(2): 606-613. |
6 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
7 | ZHENG S Q, WANG L, FENG X N, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378: 527-536. |
8 | WANG Y F, WU J T. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J]. Energy Conversion and Management, 2020, 207: 112569. |
9 | WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281. |
10 | KHAN M A, AHMAD I. An analysis of export pattern and competitiveness of India-China in global and bilateral market[J]. FIIB Business Review, 2017, 6(2): 9-18. |
11 | Seventeenth annual battery conference on applications and advances. proceedings of conference (cat. No.02TH8576)[C]//Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576). Long Beach, CA, USA. IEEE, 2002. |
12 | AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109815. |
13 | HE F, LI X S, MA L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72: 622-629. |
14 | LI X S, HE F, MA L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation[J]. Journal of Power Sources, 2013, 238: 395-402. |
15 | WANG Y, GAO Q, WANG G H, et al. A review on research status and key technologies of battery thermal management and its enhanced safety[J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. |
16 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
17 | LIU F F, LAN F C, CHEN J Q, et al. Experimental investigation on cooling/heating characteristics of ultra-thin micro heat pipe for electric vehicle battery thermal management[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-10. |
18 | YE X, ZHAO Y H, QUAN Z H. Thermal management system of lithium-ion battery module based on micro heat pipe array[J]. International Journal of Energy Research, 2018, 42(2): 648-655. |
19 | HE F Q, LI X X, ZHANG G Q, et al. Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials[J]. International Journal of Energy Research, 2018, 42(10): 3279-3288. |
20 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
21 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
22 | AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources, 2002, 110(2): 341-348. |
23 | AL-HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231. |
24 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
25 | MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661. |
26 | ZHANG Z G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47(3): 303-310. |
27 | KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation[J]. Journal of Power Sources, 2005, 142(1/2): 345-353. |
28 | KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375. |
29 | RAO Z H, WANG S F, ZHANG G Q. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12): 3408-3414. |
30 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. |
31 | BOSE P, AMIRTHAM V A. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 81-100. |
32 | WU W X, LIU J Z, LIU M, et al. An innovative battery thermal management with thermally induced flexible phase change material[J]. Energy Conversion and Management, 2020, 221: 113145. |
33 | HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management, 2019, 182: 9-20. |
34 | LAFRANCHE E, KRAWCZAK P. Toughness improvement of novel biobased aromatic polyamide/SEBS/organoclay ternary hybrids[J]. Journal of Applied Polymer Science, 2020, 137(29): 48888. |
35 | GAO J F, WANG L, GUO Z, et al. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications[J]. Chemical Engineering Journal, 2020, 381: 122778. |
36 | WU W F, YE G H, ZHANG G Q, et al. Composite phase change material with room-temperature-flexibility for battery thermal management[J]. Chemical Engineering Journal, 2022, 428: 131116. |
37 | RODRIGUES M T F, BABU G, GULLAPALLI H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 1-14. |
38 | NOBILI F, MESCHINI I, MANCINI M, et al. High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: lithium storage processes characterization and low-temperature behavior[J]. Electrochimica Acta, 2013, 107: 85-92. |
39 | OUYANG D X, HE Y P, WENG J W, et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material[J]. RSC Advances, 2019, 9(16): 9053-9066. |
40 | YANG F, XIE Y Y, DENG Y L, et al. Predictive modeling of battery degradation and greenhouse gas emissions from US state-level electric vehicle operation[J]. Nature Communications, 2018, 9: 2429. |
41 | JONES J P, SMART M C, KRAUSE F C, et al. The effect of electrolyte composition on lithium plating during low temperature charging of Li-ion cells[J]. ECS Transactions, 2017, 75(21): 1-11. |
42 | WU S J, XIONG R, LI H L, et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage, 2020, 27: 101059. |
43 | HUO Y T, RAO Z H. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method[J]. Energy Conversion and Management, 2017, 33: 204-215. |
44 | LING Z Y, WEN X Y, ZHANG Z G, et al. Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures[J]. Energy Technology, 2016, 4(9): 1071-1076. |
45 | LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144: 977-983. |
46 | ZHONG G J, ZHANG G Q, YANG X Q, et al. Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module[J]. Applied Thermal Engineering, 2017, 127: 176-183. |
47 | LUO M Y, SONG J Q, LING Z Y, et al. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from -40℃ to 50℃[J]. Materials Today Energy, 2021, 20: 100652. |
48 | LING Z Y, LUO M Y, SONG J Q, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials[J]. Energy, 2021, 219: 119496. |
49 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials[J]. Journal of Power Sources, 2018, 378: 383-403. |
50 | WENG J W, OUYANG D X, YANG X Q, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071. |
51 | XU L, WANG J P, YANG R. A new flame retardance strategy for shape stabilized phase change materials by surface coating[J]. Solar Energy Materials and Solar Cells, 2017, 170: 87-94. |
52 | HUANG Y H, CHENG Y X, ZHAO R, et al. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy[J]. Applied Energy, 2020, 262: 114536. |
53 | LI L P, WANG G, GUO C G. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials[J]. Applied Energy, 2016, 162: 428-434. |
54 | LING Z Y, LI S M, CAI C Y, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193: 117002. |
55 | ZHANG F R, LIN A Z, WANG P W, et al. Optimization design of a parallel air-cooled battery thermal management system with spoilers[J]. Applied Thermal Engineering, 2021, 182: 116062. |
56 | AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: 117503. |
57 | CHEN D F, JIANG J C, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846-854. |
58 | SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715. |
59 | HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: an experimental investigation[J]. Applied Thermal Engineering, 2020, 166: 114759. |
60 | WANG N B, LI C B, LI W, et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: an application of surrogate assisted approach[J]. Journal of Energy Storage, 2021, 40: 102771. |
61 | XU Y R, LI X X, LIU X Y, et al. Experiment investigation on a novel composite silica gel plate coupled with liquid-cooling system for square battery thermal management[J]. Applied Thermal Engineering, 2021, 184: 116217. |
62 | DING Y Z, WEI M X, LIU R. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling[J]. Applied Thermal Engineering, 2021, 186: 116494. |
63 | JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. |
64 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: 106619. |
65 | MA F, CHEN J, ZHANG P. Experimental study of the hydraulic and thermal performances of nano-sized phase change emulsion in horizontal mini-tubes[J]. Energy, 2018, 149: 944-953. |
66 | MORIMOTO T, KUMANO H. Flow and heat transfer characteristics of phase change emulsions in a circular tube: Part 2. Turbulent flow[J]. International Journal of Heat and Mass Transfer, 2018, 117: 903-911. |
67 | MORIMOTO T, KUMANO H. Flow and heat transfer characteristics of phase change emulsions in a circular tube: Part 1. Laminar flow[J]. International Journal of Heat and Mass Transfer, 2018, 117: 887-895. |
68 | ZHANG X W, KONG X, LI G J, et al. Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy, 2014, 64: 1092-1101. |
69 | QADERI A, VEYSI F. Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries[J]. Energy, 2021: 122570. |
70 | BAI F F, CHEN M B, SONG W J, et al. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate[J]. Energy, 2019, 167: 561-574. |
71 | LI H, XIAO X Y, WANG Y N, et al. Performance investigation of a battery thermal management system with microencapsulated phase change material suspension[J]. Applied Thermal Engineering, 2020, 180: 115795. |
72 | PAKROUH R, HOSSEINI M J, BAHRAMPOURY R, et al. Cylindrical battery thermal management based on microencapsulated phase change slurry[J]. Journal of Energy Storage, 2021, 40: 102602. |
73 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. |
74 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. |
75 | HASSAN M K A, NAGAMUNE K, KAKUTANI K, et al. An ultrasound technique of bone thickness estimation for pedicle screw insertion[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2014, 18(4): 529-537. |
76 | ALI H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review[J]. Journal of Energy Storage, 2019, 26: 100986. |
77 | ZHANG W C, QIU J Y, YIN X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165: 114571. |
78 | FATHABADI H. High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J]. Energy, 2014, 70: 529-538. |
79 | RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. |
80 | LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
81 | MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439. |
82 | SUN Z Q, FAN R J, YAN F, et al. Thermal management of the lithium-ion battery by the composite PCM-fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118739. |
83 | QIN P, LIAO M R, ZHANG D F, et al. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material[J]. Energy Conversion and Management, 2019, 195: 1371-1381. |
84 | JILTE R D, KUMAR R, AHMADI M H, et al. Battery thermal management system employing phase change material with cell-to-cell air cooling[J]. Applied Thermal Engineering, 2019, 161: 114199. |
85 | SAFDARI M, AHMADI R, SADEGHZADEH S. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management[J]. Energy, 2020, 193: 116840. |
86 | XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41. |
87 | HÉMERY C V, PRA F, ROBIN J F, et al. Experimental performances of a battery thermal management system using a phase change material[J]. Journal of Power Sources, 2014, 270: 349-358. |
88 | LIU Z Q, HUANG J H, CAO M, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021, 185: 116415. |
89 | MOLAEIMANESH G R, MIRFALLAH NASIRY S M, DAHMARDEH M. Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries[J]. Applied Thermal Engineering, 2020, 181: 116028. |
90 | LING Z Y, CAO J H, ZHANG W B, et al. Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology[J]. Applied Energy, 2018, 228: 777-788. |
91 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191: 116565. |
92 | AN Z G, CHEN X, ZHAO L, et al. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling[J]. Applied Thermal Engineering, 2019, 163: 114345. |
93 | CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering, 2021, 199: 117562. |
94 | ZHANG W C, LIANG Z C, YIN X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: 116380. |
95 | CAO J H, LING Z Y, FANG X M, et al. Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge[J]. Journal of Power Sources, 2020, 450: 227673. |
96 | SUN K J, CHO Y T, CHEON M W. Development of PRF extractor using thermoelectric element and temperature sensor[J]. Sensors and Actuators A: Physical, 2017, 263: 778-782. |
97 | LIAO G L, JIANG K, ZHANG F, et al. Thermal performance of battery thermal management system coupled with phase change material and thermoelectric elements[J]. Journal of Energy Storage, 2021, 43: 103217. |
[1] | Yi LI,Yongyi YUAN,Zhongliang LIAO. Design of thermal management system for high temperature methanol fuel cell [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 916-923. |
[2] | Fanming YANG,Qifang JIAO,Wei WU,Guowen HE. Influence of carbon coated aluminum foil on the performance of LiFePO4 battery [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4639-4644. |
[3] | HE Ruijun, ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, GUO Jiangrong, HU Zhigang, LIU Mo. Heat transfer characteristics of power battery pack based on composite phase change material enhanced by synergistic of carbon nano-materials [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4174-4180. |
[4] | YUAN Kunjie, ZHANG Zhengguo, FANG Xiaoming, GAO Xuenong, FANG Yutang. Research progress of inorganic hydrated salts and their phase change heat storage composites [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1820-1826. |
[5] | HONG Sihui,ZHANG Xinqiang,WANG Shuangfeng,ZHANG Zhengguo. Review on application of heat pipe technology in lithium-ion power battery thermal management system [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2923-2927. |
[6] | WANG Qi,DENG Sixu,LIU Jingbing,WANG Hao. Research progress in rate performance of LiFePO4 cathode materials [J]. Chemical Industry and Engineering Progree, 2011, 30(12): 2652-. |
[7] | ZHANG Guoqing,WU Zhongjie,RAO Zhonghao,FU Lipeng. Experimental invesitigation on heat pipe cooling effect for power battery [J]. Chemical Industry and Engineering Progree, 2009, 28(7): 1165-. |
[8] | ZHANG Guoqing,RAO Zhonghao,WU Zhongjie,FU Lipeng. Experimental investigation on the heat dissipation effect of power battery pack cooled with phase change materials [J]. Chemical Industry and Engineering Progree, 2009, 28(1): 23-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |