Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (3): 1453-1469.DOI: 10.16085/j.issn.1000-6613.2021-2227
• Chemical processes energy saving and emission reduction • Previous Articles Next Articles
CHEN Huan(), WAN Kun, NIU Bo, ZHANG Yayun(), LONG Donghui()
Received:
2021-10-30
Revised:
2021-12-26
Online:
2022-03-28
Published:
2022-03-23
Contact:
ZHANG Yayun,LONG Donghui
通讯作者:
张亚运,龙东辉
作者简介:
陈欢(1997—),男,硕士研究生,研究方向为固体废弃物的光热转化。E-mail:基金资助:
CLC Number:
CHEN Huan, WAN Kun, NIU Bo, ZHANG Yayun, LONG Donghui. Recent progresses in chemical recycling and upcycling of waste plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469.
陈欢, 万坤, 牛波, 张亚运, 龙东辉. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2227
EG/PET | 催化剂 | 催化剂/PET | 温度/℃ | 时间/min | PET 转化率/% | BHET 收率/% | 文献 |
---|---|---|---|---|---|---|---|
4/1(mL/g) | [Bmim]Cl | 0.5(质量比) | 175 | 180 | 100 | 64 | [ |
4/1(质量比) | [Bmim][FeCl4] | 0.2(质量比) | 140 | 240 | 100 | 59.2 | [ |
11.7/1(质量比) | [Bmim]2[CoCl4] | 0.17(质量比) | 170 | 90 | 100 | 81.1 | [ |
4/1(质量比) | [Ch]3[PO]4 | 0.2(质量比) | 180 | 180 | 100 | 60.6 | [ |
4/1(质量比) | [Ch][OAc] | 0.05(质量比) | 180 | 480 | 94.3 | 85.2 | [ |
4/1(质量比) | 尿素/ZnCl2 | 0.05(质量比) | 170 | 30 | 100 | 82.8 | [ |
4/1(质量比) | 1,3-二甲基脲/ZnCl2 | 0.05(质量比) | 190 | 20 | 100 | 82 | [ |
6.7/1(质量比) | [Bmim-Fe][(OAc)3]/膨润土 | 0.33(质量比) | 190 | 180 | 100 | 44 | [ |
10/1(mL/g) | Fe3O4@SiO2@(mim)[FeCl4] | 0.15(质量比) | 180 | 1440 | N/A | 100 | [ |
5/1(质量比) | 乙酰胺/ZnCl2@ZIF-8 | 0.004(质量比) | 195 | 25 | 100 | 83.2 | [ |
EG/PET | 催化剂 | 催化剂/PET | 温度/℃ | 时间/min | PET 转化率/% | BHET 收率/% | 文献 |
---|---|---|---|---|---|---|---|
4/1(mL/g) | [Bmim]Cl | 0.5(质量比) | 175 | 180 | 100 | 64 | [ |
4/1(质量比) | [Bmim][FeCl4] | 0.2(质量比) | 140 | 240 | 100 | 59.2 | [ |
11.7/1(质量比) | [Bmim]2[CoCl4] | 0.17(质量比) | 170 | 90 | 100 | 81.1 | [ |
4/1(质量比) | [Ch]3[PO]4 | 0.2(质量比) | 180 | 180 | 100 | 60.6 | [ |
4/1(质量比) | [Ch][OAc] | 0.05(质量比) | 180 | 480 | 94.3 | 85.2 | [ |
4/1(质量比) | 尿素/ZnCl2 | 0.05(质量比) | 170 | 30 | 100 | 82.8 | [ |
4/1(质量比) | 1,3-二甲基脲/ZnCl2 | 0.05(质量比) | 190 | 20 | 100 | 82 | [ |
6.7/1(质量比) | [Bmim-Fe][(OAc)3]/膨润土 | 0.33(质量比) | 190 | 180 | 100 | 44 | [ |
10/1(mL/g) | Fe3O4@SiO2@(mim)[FeCl4] | 0.15(质量比) | 180 | 1440 | N/A | 100 | [ |
5/1(质量比) | 乙酰胺/ZnCl2@ZIF-8 | 0.004(质量比) | 195 | 25 | 100 | 83.2 | [ |
塑料 | 催化剂 | 反应条件 | 产物 | 收率/% |
---|---|---|---|---|
LDPE[ | Ru/C | 200~250℃,20bar H2,16h | C7~C45液体烷烃 | >90 |
HDPE[ | Ru/C | 220℃,60bar H2,1h,正己烷 | C8~C16液体烷烃 | 60.8 |
PE[ | Pt/SrTiO3 | 300℃,12bar H2,96h | 润滑油和蜡 | 42~97 |
PE[ | Ru/CeO2 | 200~240℃,20~35bar H2,8144h | C5~C21液体烷烃,C22~C45蜡 | 83~92 |
PP[ | Ru/TiO2 | 250℃,30bar H2,16h | 润滑油 | >80 |
LDPE[ | Pt/WO3/ZrO2-HY | 225℃,30bar H2,2 h | 柴油和汽油 | 85 |
PE[ | mSiO2/Pt/SiO2 | 250℃,13.8 bar H2,24h | 柴油和润滑油 | 38 |
PET[ | Ru/Nb2O5 | 280~320℃,3bar H2,8~16h | 芳烃 | 75~85 |
PET64] | Ru/Nb2O5 | 220℃,20bar N2,12h,乙二醇 | 苯、甲苯、二甲苯 | 91 |
PE[ | ( t-BuPCP)Ir,Re2O7/γ-Al2O3 | 150~175℃,72~96h,正己烷 | 液体油和蜡 | 98 |
PE[ | SnPt/γ-Al2O3,Re2O7/γ-Al2O3 | 200℃,20~40bar He,15h | 低分子量齐聚物 | N/A |
PE[ | Pt/γ-Al2O3 | 280℃,24h | 烷基芳烃和蜡 | 80 |
塑料 | 催化剂 | 反应条件 | 产物 | 收率/% |
---|---|---|---|---|
LDPE[ | Ru/C | 200~250℃,20bar H2,16h | C7~C45液体烷烃 | >90 |
HDPE[ | Ru/C | 220℃,60bar H2,1h,正己烷 | C8~C16液体烷烃 | 60.8 |
PE[ | Pt/SrTiO3 | 300℃,12bar H2,96h | 润滑油和蜡 | 42~97 |
PE[ | Ru/CeO2 | 200~240℃,20~35bar H2,8144h | C5~C21液体烷烃,C22~C45蜡 | 83~92 |
PP[ | Ru/TiO2 | 250℃,30bar H2,16h | 润滑油 | >80 |
LDPE[ | Pt/WO3/ZrO2-HY | 225℃,30bar H2,2 h | 柴油和汽油 | 85 |
PE[ | mSiO2/Pt/SiO2 | 250℃,13.8 bar H2,24h | 柴油和润滑油 | 38 |
PET[ | Ru/Nb2O5 | 280~320℃,3bar H2,8~16h | 芳烃 | 75~85 |
PET64] | Ru/Nb2O5 | 220℃,20bar N2,12h,乙二醇 | 苯、甲苯、二甲苯 | 91 |
PE[ | ( t-BuPCP)Ir,Re2O7/γ-Al2O3 | 150~175℃,72~96h,正己烷 | 液体油和蜡 | 98 |
PE[ | SnPt/γ-Al2O3,Re2O7/γ-Al2O3 | 200℃,20~40bar He,15h | 低分子量齐聚物 | N/A |
PE[ | Pt/γ-Al2O3 | 280℃,24h | 烷基芳烃和蜡 | 80 |
1 | CHEN X, WANG Y D, ZHANG L. Recent progress in the chemical upcycling of plastic wastes[J]. ChemSusChem, 2021, 14(19): 4137-4151. |
2 | NARAYAN R. Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment[J]. MRS Bulletin, 2011, 36(9): 716-721. |
3 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
4 | VOLLMER I, JENKS M J F, ROELANDS M C P, et al. Beyond mechanical recycling: giving new life to plastic waste[J]. Angewandte Chemie International Edition, 2020, 59(36): 15402-15423. |
5 | HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: a source of microplastics? -Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. |
6 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
7 | RAHIMI A, GARCÍA J M. Chemical recycling of waste plastics for new materials production[J]. Nature Reviews Chemistry, 2017, 1: 46. |
8 | CHEN H, WAN K, ZHANG Y Y, et al. Waste to wealth: chemical recycling and chemical upcycling of waste plastics for a great future[J]. ChemSusChem, 2021, 14(19): 4123-4136. |
9 | FAGNANI D E, TAMI J L, COPLEY G, et al. 100th Anniversary of macromolecular science viewpoint: redefining sustainable polymers[J]. ACS Macro Letters, 2021, 10(1): 41-53. |
10 | ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021, 282: 124523. |
11 | LI Q Y, FARAMARZI A, ZHANG S, et al. Progress in catalytic pyrolysis of municipal solid waste[J]. Energy Conversion and Management, 2020, 226: 113525. |
12 | KOSLOSKI-OH S C, WOOD Z A, MANJARREZ Yet al. Catalytic methods for chemical recycling or upcycling of commercial polymers[J]. Materials Horizons, 2021, 8(4): 1084-1129. |
13 | BAGRI R, WILLIAMS P T. Catalytic pyrolysis of polyethylene[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 29-41. |
14 | CALDEIRA V P S, PERAL A, LINARES M, et al. Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high-density polyethylene[J]. Applied Catalysis A: General, 2017, 531: 187-196. |
15 | AGUADO J, SERRANO D P, MIGUEL G SAN, et al. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 415-423. |
16 | RATNASARI D K, NAHIL M A, WILLIAMS P T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
17 | ELORDI G, OLAZAR M, LOPEZ G, et al. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 345-351. |
18 | XUE Y, JOHNSTON P, BAI X L. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
19 | MARK L O, CENDEJAS M C, HERMANS I. The use of heterogeneous catalysis in the chemical valorization of plastic waste[J]. ChemSusChem, 2020, 13(22): 5808-5836. |
20 | RENZINI M S, SEDRAN U, PIERELLA L B. H-ZSM-11 and Zn-ZSM-11 zeolites and their applications in the catalytic transformation of LDPE[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 215-220. |
21 | ZHANG X S, LEI H W, YADAVALLI G, et al. Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5[J]. Fuel, 2015, 144: 33-42. |
22 | DING K, LIU S S, HUANG Y, et al. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production[J]. Energy Conversion and Management, 2019, 196: 1316-1325. |
23 | FAN L L, SU Z Y, WU J B, et al. Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: effects of parameter conditions[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105213. |
24 | DANISH M, AHMAD T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 1-21. |
25 | UTETIWABO W, YANG L, TUFAIL M K, et al. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors[J]. Chinese Chemical Letters, 2020, 31(6): 1474-1489. |
26 | ZHANG Y Y, DUAN D L, LEI H W, et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons[J]. Applied Energy, 2019, 251:113337. |
27 | WAN K, CHEN H, ZHENG F J, et al. Tunable production of jet-fuel range alkanes and aromatics by catalytic pyrolysis of LDPE over biomass-derived activated carbons[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17451-17461. |
28 | SUN K, HUANG Q X, MENG X D, et al. Catalytic pyrolysis of waste polyethylene into aromatics by H3PO4-activated carbon[J]. Energy & Fuels, 2018, 32(9): 9772-9781. |
29 | DUAN D L, FENG Z Q, DONG X Y, et al. Improving bio-oil quality from low-density polyethylene pyrolysis: effects of varying activation and pyrolysis parameters[J]. Energy, 2021, 232: 121090. |
30 | SUN K, HUANG Q X, CHI Y, et al. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil[J]. Waste Management, 2018, 81: 128-137. |
31 | LEE K H. Composition of aromatic products in the catalytic degradation of the mixture of waste polystyrene and high-density polyethylene using spent FCC catalyst[J]. Polymer Degradation and Stability, 2008, 93(7): 1284-1289. |
32 | VOLLMER I, JENKS M J F, MAYORGA GONZÁLEZ R, et al. Plastic waste conversion over a refinery waste catalyst[J]. Angewandte Chemie International Edition, 2021, 60(29): 16101-16108. |
33 | MANOS G, YUSOF I Y, PAPAYANNAKOS N, et al. Catalytic cracking of polyethylene over clay catalysts. Comparison with an ultrastable Y zeolite[J]. Industrial & Engineering Chemistry Research, 2001, 40(10): 2220-2225. |
34 | LI K X, LEI J X, YUAN G A, et al. Fe-, Ti-, Zr- and Al-pillared clays for efficient catalytic pyrolysis of mixed plastics[J]. Chemical Engineering Journal, 2017, 317: 800-809. |
35 | ZHANG Z B, HIROSE T, NISHIO S, et al. Chemical recycling of waste polystyrene into styrene over solid acids and bases[J]. Industrial & Engineering Chemistry Research, 1995, 34(12): 4514-4519. |
36 | 冯时宇, 李洋, 李凯, 等. 塑料废弃物热催化制备碳纳米管的研究进展[J]. 环境工程, 2021, 39(4): 107-114. |
FENG Shiyu, LI Yang, LI Kai, et al. Progress in preparation of carbon nanotubes by thermal catalysis of waste plastics[J]. Environmental Engineering, 2021, 39(4): 107-114. | |
37 | WU C F, NAHIL M A, MISKOLCZI N, et al. Production and application of carbon nanotubes, as a co-product of hydrogen from the pyrolysis-catalytic reforming of waste plastic[J]. Process Safety and Environmental Protection, 2016, 103: 107-114. |
38 | YAO D D, WU C F, YANG H P, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148: 692-700. |
39 | YAO D D, ZHANG Y S, WILLIAMS P T, et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics: influence of catalyst composition and operational parameters[J]. Applied Catalysis B: Environmental, 2018, 221: 584-597. |
40 | JIA J B, VEKSHA A, LIM T T, et al. In situ grown metallic nickel from X-Ni (X=La, Mg, Sr) oxides for converting plastics into carbon nanotubes: influence of metal-support interaction[J]. Journal of Cleaner Production, 2020, 258: 120633. |
41 | ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructure carbon materials via non-oxidative thermal degradation of real polypropylene waste plastic using La2O3 supported Ni and Ni-Cu catalysts[J]. Polymer Degradation and Stability, 2019, 167: 157-169. |
42 | JIE X Y, LI W S, SLOCOMBE D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons[J]. Nature Catalysis, 2020, 3(11): 902-912. |
43 | ZHENG X, ZHANG R Q, FANG P T, et al. Advances in ionic liquid-catalyzed poly(ethylene terephthalate) degradation[J]. Scientia Sinica Chimica, 2021, 51(10): 1330-1342. |
44 | WANG H, LI Z X, LIU Y Q, et al. Degradation of poly(ethylene terephthalate) using ionic liquids[J]. Green Chemistry, 2009, 11(10): 1568-1575. |
45 | WANG H, LIU Y Q, LI Z X, et al. Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids[J]. European Polymer Journal, 2009, 45(5): 1535-1544. |
46 | ALNAQBI M A, MOHSIN M A, BUSHEER R M, et al. Microwave assisted glycolysis of poly(ethylene terephthalate) catalyzed by 1-butyl-3-methylimidazolium bromide ionic liquid[J]. Journal of Applied Polymer Science, 2015, 132(12): 41666. |
47 | WANG H, YAN R Y, LI Z X, et al. Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate)[J]. Catalysis Communications, 2010, 11(8): 763-767. |
48 | WANG Q, GENG Y R, LU X M, et al. First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET)[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(2): 340-348. |
49 | SUN J, LIU D J, YOUNG R P, et al. Solubilization and upgrading of high polyethylene terephthalate loadings in a low-costing bifunctional ionic liquid[J]. ChemSusChem, 2018, 11(4): 781-792. |
50 | LIU Y C, YAO X Q, YAO H Y, et al. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids[J]. Green Chemistry, 2020, 22(10): 3122-3131. |
51 | WANG Q, YAO X Q, GENG Y R, et al. Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET)[J]. Green Chemistry, 2015, 17(4): 2473-2479. |
52 | LIU B, FU W Z, LU X M, et al. Lewis acid-base synergistic catalysis for polyethylene terephthalate degradation by 1, 3-dimethylurea/Zn(OAc)2 deep eutectic solvent[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3292-3300. |
53 | AL-SABAGH A M, YEHIA F Z, ESHAQ G, et al. Ionic liquid-coordinated ferrous acetate complex immobilized on bentonite as a novel separable catalyst for PET glycolysis[J]. Industrial & Engineering Chemistry Research, 2015, 54(50): 12474-12481. |
54 | CANO I, MARTIN C, FERNANDES J A, et al. Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles—The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET[J]. Applied Catalysis B: Environmental, 2020, 260: 118110. |
55 | WANG R, WANG T L, YU G R, et al. A new class of catalysts for the glycolysis of PET: deep eutectic solvent@ZIF-8 composite[J]. Polymer Degradation and Stability, 2021, 183: 109463. |
56 | RORRER J E, BECKHAM G T, LESHKOV Y R. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions[J]. JACS Au, 2021, 1(1): 8-12. |
57 | JIA C H, XIE S Q, ZHANG W L, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst[J]. Chem Catalysis, 2021, 1(2): 437-455. |
58 | CELIK G, KENNEDY R M, HACKLER R A, et al. Upcycling single-use polyethylene into high-quality liquid products[J]. ACS Central Science, 2019, 5(11): 1795-1803. |
59 | NAKAJI Y, TAMURA M, MIYAOKA S, et al. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes[J]. Applied Catalysis B: Environmental, 2021, 285: 119805. |
60 | KOTS P A, LIU S B, VANCE B C, et al. Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts[J]. ACS Catalysis, 2021, 11(13): 8104-8115. |
61 | LIU S B, KOTS P A, VANCE B C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17), No. eabf8283. DOI:10.1126/sciadv.abf8283 |
62 | TENNAKOON A, WU X, PATERSON A L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901. |
63 | JING Y X, WANG Y Q, FURUKAWA S, et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J]. Angewandte Chemie International Edition, 2021, 60(10): 5527-5535. |
64 | LU S L, JING Y X, FENG B, et al. H2-free plastic conversion: converting PET back to BTX by unlocking hidden hydrogen[J]. ChemSusChem, 2021, 14(19): 4242-4250. |
65 | JIA X Q, QIN C, FRIEDBERGER T, et al. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions[J]. Science Advances, 2016, 2(6): e1501591. |
66 | ELLIS L D, ORSKI S V, KENLAW G A, et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(2): 623-628. |
67 | ZHANG F, ZENG M H, YAPPERT R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
68 | KAWAI T, SAKATA T. Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement[J]. Chemistry Letters, 1981, 10(1): 81-84. |
69 | UEKERT T, KUEHNEL M F, WAKERLEY D W, et al. Plastic waste as a feedstock for solar-driven H2 generation[J]. Energy & Environmental Science, 2018, 11(10): 2853-2857. |
70 | UEKERT T, KASAP H, REISNER E. Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J]. Journal of the American Chemical Society, 2019, 141(38): 15201-15210. |
71 | JIAO X C, ZHENG K, CHEN Q X, et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions[J]. Angewandte Chemie International Edition, 2020, 59(36): 15497-15501. |
72 | CHEN L Y, MALOLLARI K G, ULIANA A, et al. Selective, catalytic oxidations of C—H bonds in polyethylenes produce functional materials with enhanced adhesion[J]. Chem, 2021, 7(1): 137-145. |
73 | LEWIS S E, WILHELMY B E, LEIBFARTH F A. Upcycling aromatic polymers through C—H fluoroalkylation[J]. Chemical Science, 2019, 10(25): 6270-6277. |
74 | LEWIS S E, WILHELMY B E, LEIBFARTH F A. Organocatalytic C—H fluoroalkylation of commodity polymers[J]. Polymer Chemistry, 2020, 11(30): 4914-4919. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |