1 |
YU X H, ZHAO Z, WEI Y C, et al. Three-dimensionally ordered macroporous K0.5MnCeOx/SiO2 catalysts: facile preparation and worthwhile catalytic performances for soot combustion[J]. Catalysis Science &Technology, 2019, 9(6): 1372-1386.
|
2 |
YU X H, WANG L Y, ZHAO Z, et al. 3DOM SiO2-supported different alkali metals-modified MnOx catalysts: preparation and catalytic performance for soot combustion[J]. ChemistrySelect, 2017, 2(31): 10176-10185.
|
3 |
TAN J B, WEI Y C, SUN Y Q, et al. Simultaneous removal of NOx and soot particulates from diesel engine exhaust by 3DOM Fe-Mn oxide catalysts[J]. Journal of Industrial and Engineering Chemistry, 2018, 63: 84-94.
|
4 |
陈茂重, 王斓懿, 于学华, 等. 锰基催化剂在催化柴油炭烟燃烧中的应用[J]. 化学进展, 2019, 31(5): 723-737.
|
|
CHEN Maozhong, WANG Lanyi, YU Xuehua, et al. Application of Mn-based catalysts for the catalytic combustion of diesel soot[J]. Progress in Chemistry, 2019, 31(5): 723-737.
|
5 |
CUI B, ZHOU L J, LI K, et al. Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion[J]. Applied Catalysis B: Environmental, 2020, 267: 118670.
|
6 |
SHANG Z, SUN M, CHANG S M, et al. Activity and stability of Co3O4-based catalysts for soot oxidation: the enhanced effect of Bi2O3 on activation and transfer of oxygen[J]. Applied Catalysis B: Environmental, 2017, 209: 33-44.
|
7 |
FENG N J, ZHU Z J, ZHAO P, et al. Facile fabrication of trepang-like CeO2@MnO2 nanocomposite with high catalytic activity for soot removal[J]. Applied Surface Science, 2020, 515: 146013.
|
8 |
YAO P, HE J S, JIANG X, et al. Factors determining gasoline soot abatement over CeO2-ZrO2-MnOx catalysts under low oxygen concentration condition[J]. Journal of the Energy Institute, 2020, 93(2): 774-783.
|
9 |
GRABCHENKO M V, MAMONTOV G V, ZAIKOVSKII V I, et al. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation[J]. Applied Catalysis B: Environmental, 2020, 260: 118148.
|
10 |
WANG C, YUAN H Y, LU G Z, et al. Oxygen vacancies and alkaline metal boost CeO2 catalyst for enhanced soot combustion activity: a first-principles evidence[J]. Applied Catalysis B: Environmental, 2021, 281: 119468.
|
11 |
MEI X L, XIONG J, WEI Y C, et al. High-efficient non-noble metal catalysts of 3D ordered macroporous perovskite-type La2NiB’O6 for soot combustion: insight into the synergistic effect of binary Ni and B’ sites[J]. Applied Catalysis B: Environmental, 2020, 275: 119108.
|
12 |
ZHAO P, FENG N J, FANG F, et al. Facile synthesis of three-dimensional ordered macroporous Sr1-xKxTiO3 perovskites with enhanced catalytic activity for soot combustion[J]. Catalysis Science &Technology, 2018, 8(21): 5462-5472.
|
13 |
LI Q, XIN Y, ZHANG Z L, et al. Electron donation mechanism of superior Cs-supported oxides for catalytic soot combustion[J]. Chemical Engineering Journal, 2018, 337: 654-660.
|
14 |
ZHAI G J, WANG J G, CHEN Z M, et al. Highly enhanced soot oxidation activity over 3DOM Co3O4-CeO2 catalysts by synergistic promoting effect[J]. Journal of Hazardous Materials, 2019, 363: 214-226.
|
15 |
LAISHRAM D, SHEJALE K P, GUPTA R, et al. Solution processed hafnia nanoaggregates: influence of surface oxygen on catalytic soot oxidation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11286-11294.
|
16 |
WANG Z P, ZHU H J, AI L J, et al. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln=La, Nd and Sm)[J]. Journal of Colloid and Interface Science, 2016, 478: 209-216.
|
17 |
卢英, 邢朝阳, 方秀秀, 等. 整体式锰铈复合氧化物催化剂的二乙胺催化燃烧性能[J]. 环境化学, 2020, 39(8): 2147-2153.
|
|
LU Ying, XING Zhaoyang, FANG Xiuxiu, et al. Catalytic combustion of diethylamine by monolithic manganese bismuth complex oxides catalysts[J]. Environmental Chemistry, 2020, 39(8): 2147-2153.
|
18 |
YANG W H, PENG Y, WANG Y, et al. Controllable redox-induced in situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279.
|
19 |
YU D, REN Y, YU X H, et al. Facile synthesis of birnessite-type K2Mn4O8 and cryptomelane-type K2-xMn8O16 catalysts and their excellent catalytic performance for soot combustion with high resistance to H2O and SO2[J]. Applied Catalysis B: Environmental, 2021, 285: 119779.
|
20 |
PARK D H, LEE S H, KIM T W, et al. Non-hydrothermal synthesis of ID nanostructured manganese-based oxides: effect of cation substitution on the electrochemical performance of nanowires[J]. Advanced Functional Materials, 2007, 17(15): 2949-2956.
|
21 |
DING Y S, SHEN X F, GOMEZ S, et al. Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures[J]. Advanced Functional Materials, 2006, 16(4): 549-555.
|
22 |
KONG D Z, LUO J S, WANG Y L, et al. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage[J]. Advanced Functional Materials, 2014, 24(24): 3815-3826.
|
23 |
ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313.
|
24 |
CHENG L, MEN Y, WANG J G, et al. Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion[J]. Applied Catalysis B: Environmental, 2017, 204: 374-384.
|
25 |
WAGLOEHNER S, NITZER-NOSKI M, KURETI S. Oxidation of soot on manganese oxide catalysts[J]. Chemical Engineering Journal, 2015, 259: 492-504.
|
26 |
ZHAI X X, JING F L, LI L M, et al. Toluene catalytic oxidation over the layered MOx-δ-MnO2 (M=Pt, Ir, Ag) composites originated from the facile self-driving combustion method[J]. Fuel, 2021, 283: 118888.
|
27 |
ZHAO Y, XU L, MAI L, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19569-19574.
|
28 |
WASALATHANTHRI N D, SANTAMARIA T M, KRIZ D A, et al. Mesoporous manganese oxides for NO2-assisted catalytic soot oxidation[J]. Applied Catalysis B: Environmental, 2017, 201: 543-551.
|
29 |
WEI Y C, LIU J, ZHAO Z, et al. Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation[J]. Angewandte Chemie International Edition, 2011, 50(10): 2326-2329.
|
30 |
YU X H, LI J M, WEI Y C, et al. Three-dimensionally ordered macroporous MnxCe1-xOδ and Pt/Mn0.5Ce0.5Oδ catalysts: synthesis and catalytic performance for soot oxidation[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9653-9664.
|
31 |
LIU Y X, DAI H X, DENG J G, et al. In situ poly(methyl-methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol[J]. Applied Catalysis B: Environmental, 2013, 140/141: 493-505.
|
32 |
XIE Y J, YU Y Y, GONG X Q, et al. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane[J]. CrystEngComm, 2015, 17(15): 3005-3014.
|
33 |
ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental, 2007, 76(1/2): 123-134.
|
34 |
GAO Y B, WANG Z P, CUI C C, et al. Amorphous manganese oxide as highly active catalyst for soot oxidation[J]. Environmental Science and Pollution Research, 2020, 27(12): 13488-13500.
|
35 |
JI F, MEN Y, WANG J G, et al. Promoting diesel soot combustion efficiency by tailoring the shapes and crystal facets of nanoscale Mn3O4[J]. Applied Catalysis B: Environmental, 2019, 242: 227-237.
|
36 |
YU X H, ZHAO Z, WEI Y C, et al. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: facile synthesis, low cost and high catalytic activity for diesel soot combustion[J]. Scientific Reports, 2017, 7: 43894.
|
37 |
WEI Y C, ZHAO Z, LI T, et al. The novel catalysts of truncated polyhedron Pt nanoparticles supported on three-dimensionally ordered macroporous oxides (Mn, Fe, Co, Ni, Cu) with nanoporous walls for soot combustion[J]. Applied Catalysis B: Environmental, 2014, 146: 57-70.
|