Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 759-769.DOI: 10.16085/j.issn.1000-6613.2021-0522
• Industrial catalysis • Previous Articles Next Articles
ZHAO Xiao(), CHEN Zhongshun, TANG Zhongqiang, SHI Xuan, DAI Chengyi(
), MA Xiaoxun(
)
Received:
2021-03-15
Revised:
2021-05-21
Online:
2022-02-23
Published:
2022-02-05
Contact:
DAI Chengyi,MA Xiaoxun
赵潇(), 陈中顺, 唐忠强, 石轩, 代成义(
), 马晓迅(
)
通讯作者:
代成义,马晓迅
作者简介:
赵潇(1995—),男,硕士研究生,研究方向为合成气转化。E-mail:基金资助:
CLC Number:
ZHAO Xiao, CHEN Zhongshun, TANG Zhongqiang, SHI Xuan, DAI Chengyi, MA Xiaoxun. EDTA-assisted preparation of highly active catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 759-769.
赵潇, 陈中顺, 唐忠强, 石轩, 代成义, 马晓迅. EDTA辅助制备高活性费托合成催化剂[J]. 化工进展, 2022, 41(2): 759-769.
样本代码 | Fe/mol | EDTA/mol | EDTA-2Na/mol | NaNO3/mol |
---|---|---|---|---|
10Fe/Al2O3 | M | 0 | 0 | 0 |
10Fe2.5E/Al2O3 | M | 0.25M | 0 | 0 |
10Fe5E/Al2O3 | M | 0.5M | 0 | 0 |
10Fe7.5E/Al2O3 | M | 0.75M | 0 | 0 |
10Fe10E/Al2O3 | M | M | 0 | 0 |
10Fe10Na/Al2O3 | M | 0 | 0 | M |
10Fe10E5Na/Al2O3 | M | 0.75M | 0.25M | 0 |
10Fe5E10Na/Al2O3 | M | 0 | 0.5M | 0 |
10Fe7.5E10Na/Al2O3 | M | 0.25M | 0.5M | 0 |
10Fe10E10Na/Al2O3 | M | 0.5M | 0.5M | 0 |
10Fe10E15Na/Al2O3 | M | 0.25M | 0.75M | 0 |
10Fe10E20Na/Al2O3 | M | 0 | M | 0 |
样本代码 | Fe/mol | EDTA/mol | EDTA-2Na/mol | NaNO3/mol |
---|---|---|---|---|
10Fe/Al2O3 | M | 0 | 0 | 0 |
10Fe2.5E/Al2O3 | M | 0.25M | 0 | 0 |
10Fe5E/Al2O3 | M | 0.5M | 0 | 0 |
10Fe7.5E/Al2O3 | M | 0.75M | 0 | 0 |
10Fe10E/Al2O3 | M | M | 0 | 0 |
10Fe10Na/Al2O3 | M | 0 | 0 | M |
10Fe10E5Na/Al2O3 | M | 0.75M | 0.25M | 0 |
10Fe5E10Na/Al2O3 | M | 0 | 0.5M | 0 |
10Fe7.5E10Na/Al2O3 | M | 0.25M | 0.5M | 0 |
10Fe10E10Na/Al2O3 | M | 0.5M | 0.5M | 0 |
10Fe10E15Na/Al2O3 | M | 0.25M | 0.75M | 0 |
10Fe10E20Na/Al2O3 | M | 0 | M | 0 |
催化剂 | 水溶液 | pH |
---|---|---|
10Fe/Al2O3 | Fe(NO3)3 | 0.02 |
10Fe10E/Al2O3 | Fe(NO3)3+EDTA | -0.63 |
10Fe10Na/Al2O3 | Fe(NO3)3+NaNO3 | 0.01 |
10Fe10E10Na/Al2O3 | Fe(NO3)3+EDTA+EDTA-2Na | -0.62 |
催化剂 | 水溶液 | pH |
---|---|---|
10Fe/Al2O3 | Fe(NO3)3 | 0.02 |
10Fe10E/Al2O3 | Fe(NO3)3+EDTA | -0.63 |
10Fe10Na/Al2O3 | Fe(NO3)3+NaNO3 | 0.01 |
10Fe10E10Na/Al2O3 | Fe(NO3)3+EDTA+EDTA-2Na | -0.62 |
催化剂 | CO吸附量/μmol·g-1 |
---|---|
10Fe/Al2O3 | 1.44 |
10Fe2.5E/Al2O3 | 1.45 |
10Fe5E/Al2O3 | 1.55 |
10Fe7.5E/Al2O3 | 1.62 |
10Fe10E/Al2O3 | 1.71 |
催化剂 | CO吸附量/μmol·g-1 |
---|---|
10Fe/Al2O3 | 1.44 |
10Fe2.5E/Al2O3 | 1.45 |
10Fe5E/Al2O3 | 1.55 |
10Fe7.5E/Al2O3 | 1.62 |
10Fe10E/Al2O3 | 1.71 |
催化剂 | CO转化率/% | CO2选择性/% | 烃类选择性/% | 总选择性/% | O/P | ||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2~C | C2~C | C5~C11 | C | |||||
10Fe10Na/Al2O3 | 56.5 | 36.4 | 11.2 | 6.0 | 25.8 | 43.8 | 13.2 | 69.6 | 4.3 |
10Fe5E10Na/Al2O3 | 73.5 | 39.9 | 11.7 | 4.6 | 23.8 | 46.1 | 13.8 | 69.9 | 5.2 |
10Fe7.5E10Na/Al2O3 | 77.6 | 34.7 | 10.9 | 6.1 | 23.1 | 44.8 | 15.1 | 67.9 | 3.8 |
10Fe10E10Na/Al2O3 | 88.5 | 36.3 | 9.7 | 5.0 | 24.8 | 46.4 | 14.1 | 71.2 | 5.0 |
催化剂 | CO转化率/% | CO2选择性/% | 烃类选择性/% | 总选择性/% | O/P | ||||
---|---|---|---|---|---|---|---|---|---|
CH4 | C2~C | C2~C | C5~C11 | C | |||||
10Fe10Na/Al2O3 | 56.5 | 36.4 | 11.2 | 6.0 | 25.8 | 43.8 | 13.2 | 69.6 | 4.3 |
10Fe5E10Na/Al2O3 | 73.5 | 39.9 | 11.7 | 4.6 | 23.8 | 46.1 | 13.8 | 69.9 | 5.2 |
10Fe7.5E10Na/Al2O3 | 77.6 | 34.7 | 10.9 | 6.1 | 23.1 | 44.8 | 15.1 | 67.9 | 3.8 |
10Fe10E10Na/Al2O3 | 88.5 | 36.3 | 9.7 | 5.0 | 24.8 | 46.4 | 14.1 | 71.2 | 5.0 |
催化剂 | CO吸附量/μmol?g-1 |
---|---|
10Fe10Na/Al2O3 | 1.69 |
10Fe10E5Na/Al2O3 | 1.54 |
10Fe10E10Na/Al2O3 | 1.76 |
10Fe10E15Na/Al2O3 | 1.97 |
10Fe10E20Na/Al2O3 | 2.29 |
催化剂 | CO吸附量/μmol?g-1 |
---|---|
10Fe10Na/Al2O3 | 1.69 |
10Fe10E5Na/Al2O3 | 1.54 |
10Fe10E10Na/Al2O3 | 1.76 |
10Fe10E15Na/Al2O3 | 1.97 |
10Fe10E20Na/Al2O3 | 2.29 |
催化剂 | ICP | BET比表面积 /m2?g-1 | 总孔容 /cm3?g-1 | 孔径 /nm | |
---|---|---|---|---|---|
铁负载量(质量分数)/% | 钠负载量(质量分数)/% | ||||
Al2O3 | — | — | 147 | 0.89 | 31.3 |
10Fe/Al2O3 | 9.1 | — | 123 | 0.59 | 17.7 |
10Fe10E/Al2O3 | 9.0 | — | 137 | 0.54 | 17.7 |
10Fe10Na/Al2O3 | 8.8 | 3.6 | 118 | 0.62 | 17.5 |
10Fe10E10Na/Al2O3 | 8.9 | 3.8 | 155 | 0.40 | 18.1 |
催化剂 | ICP | BET比表面积 /m2?g-1 | 总孔容 /cm3?g-1 | 孔径 /nm | |
---|---|---|---|---|---|
铁负载量(质量分数)/% | 钠负载量(质量分数)/% | ||||
Al2O3 | — | — | 147 | 0.89 | 31.3 |
10Fe/Al2O3 | 9.1 | — | 123 | 0.59 | 17.7 |
10Fe10E/Al2O3 | 9.0 | — | 137 | 0.54 | 17.7 |
10Fe10Na/Al2O3 | 8.8 | 3.6 | 118 | 0.62 | 17.5 |
10Fe10E10Na/Al2O3 | 8.9 | 3.8 | 155 | 0.40 | 18.1 |
1 | ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
2 | CHENG K, KANG J G, KING D L, et al. Advances in catalysis for syngas conversion to hydrocarbons[J]. Advances in Catalysis, 2017, 60: 125-208. |
3 | 高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195. |
GAO Peng, CUI Xu, ZHONG Liangshu, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 183-195. | |
4 | 贾艳明, 张四方, 王俊文, 等. 合成气转化制烃类化学品催化剂研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(1): 91-96. |
JIA Yanming, ZHANG Sifang, WANG Junwen, et al. Research progress in the catalysts for conversion of syngas to hydrocarbons[J]. Natural Gas Chemical Industry, 2020, 45(1): 91-96. | |
5 | 郝青青, 胥娜, 刘昭铁, 等. 合成气一步法合成清洁汽油的研究进展[J]. 石油化工, 2009, 38(2): 207-214. |
HAO Qingqing, XU Na, LIU Zhaotie, et al. Recent advances in one-step synthesis of clean gasoline from syngas[J]. Petrochemical Technology, 2009, 38(2): 207-214. | |
6 | KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev., 2007, 107(5): 1692-1744. |
7 | 刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604. |
LIU Yitao, ZHU Minghui, YANG Zixu, et al. Advances of catalysts for direct synthesis of lower olefins from syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604. | |
8 | XIE J X, TORRES GALVIS H M, KOEKEN A C J, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts[J]. ACS Catalysis, 2016, 6(6): 4017-4024. |
9 | 葛秋伟, 肖竹钱, 张金建, 等. 合成气一步法制汽油馏分烃费托合成催化剂研究进展[J]. 应用化工, 2015, 44(9): 1737-1740, 1746. |
GE Qiuwei, XIAO Zhuqian, ZHANG Jinjian, et al. Development of Fischer-Tropsch catalysts for one-step gasoline synthesis from syngas[J]. Applied Chemical Industry, 2015, 44(9): 1737-1740, 1746. | |
10 | LU F X, CHEN X, LEI Z G, et al. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2021, 281: 119521. |
11 | TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
12 | TORRES GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838. |
13 | 马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000. |
MA Guangyuan, XU Yanfei, WANG Jie, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000. | |
14 | MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chemical Reviews, 2015, 115(14): 6687-6718. |
15 | ZHOU X P, JI J, WANG D, et al. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chemical Communications, 2015, 51(42): 8853-8856. |
16 | ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907. |
17 | DAI C Y, ZHAO X, HU B R, et al. Effect of EDTA-2Na modification on Fe-Co/Al2O3 for hydrogenation of carbon dioxide to lower olefins and gasoline[J]. Journal of CO2 Utilization, 2021, 43: 101369. |
18 | 吴建民, 孙启文, 张宗森, 等. 费托合成铁基催化剂上CO和H2的吸附特性[J]. 过程工程学报, 2013, 13(2): 327-332. |
WU Jianmin, SUN Qiwen, ZHANG Zongsen, et al. Chemisorption characteristics of CO and H2 over iron-based Fischer-Tropsch synthesis catalyst[J]. The Chinese Journal of Process Engineering, 2013, 13(2): 327-332. | |
19 | 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 291-299. |
WENG S F. Fourier fransform infrared spectromatry[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 291-299. | |
20 | 毛菀钰, 孙启文, 应卫勇, 等. 高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究[J]. 燃料化学学报, 2013, 41(3): 314-322. |
MAO Wanyu, SUN Qiwen, YING Weiyong, et al. Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 314-322. | |
21 | LAVALLEY J C, SAUSSEY J, LAMOTTE J, et al. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. The Journal of Physical Chemistry, 1990, 94(15): 5941-5947. |
22 | WANG Weiwei, QU Zhenping, SONG Lixin, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1-xZrxO2 catalyst for CO2 hydrogenation to CH3OH[J]. Journal of Energy Chemistry, 2020, 47: 18-28. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |