1 |
ZHOU W, CHENG K, KANG J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228.
|
2 |
CHENG K, KANG J G, KING D L, et al. Advances in catalysis for syngas conversion to hydrocarbons[J]. Advances in Catalysis, 2017, 60: 125-208.
|
3 |
高鹏, 崔勖, 钟良枢, 等. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(1): 183-195.
|
|
GAO Peng, CUI Xu, ZHONG Liangshu, et al. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 183-195.
|
4 |
贾艳明, 张四方, 王俊文, 等. 合成气转化制烃类化学品催化剂研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(1): 91-96.
|
|
JIA Yanming, ZHANG Sifang, WANG Junwen, et al. Research progress in the catalysts for conversion of syngas to hydrocarbons[J]. Natural Gas Chemical Industry, 2020, 45(1): 91-96.
|
5 |
郝青青, 胥娜, 刘昭铁, 等. 合成气一步法合成清洁汽油的研究进展[J]. 石油化工, 2009, 38(2): 207-214.
|
|
HAO Qingqing, XU Na, LIU Zhaotie, et al. Recent advances in one-step synthesis of clean gasoline from syngas[J]. Petrochemical Technology, 2009, 38(2): 207-214.
|
6 |
KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev., 2007, 107(5): 1692-1744.
|
7 |
刘义涛, 朱明辉, 杨子旭, 等. 煤制化学品:合成气直接制低碳烯烃催化剂研究进展[J]. 化工进展, 2021, 40(2): 594-604.
|
|
LIU Yitao, ZHU Minghui, YANG Zixu, et al. Advances of catalysts for direct synthesis of lower olefins from syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 594-604.
|
8 |
XIE J X, TORRES GALVIS H M, KOEKEN A C J, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts[J]. ACS Catalysis, 2016, 6(6): 4017-4024.
|
9 |
葛秋伟, 肖竹钱, 张金建, 等. 合成气一步法制汽油馏分烃费托合成催化剂研究进展[J]. 应用化工, 2015, 44(9): 1737-1740, 1746.
|
|
GE Qiuwei, XIAO Zhuqian, ZHANG Jinjian, et al. Development of Fischer-Tropsch catalysts for one-step gasoline synthesis from syngas[J]. Applied Chemical Industry, 2015, 44(9): 1737-1740, 1746.
|
10 |
LU F X, CHEN X, LEI Z G, et al. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2021, 281: 119521.
|
11 |
TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: a review[J]. ACS Catalysis, 2013, 3(9): 2130-2149.
|
12 |
TORRES GALVIS H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 835-838.
|
13 |
马光远, 徐艳飞, 王捷, 等. 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000.
|
|
MA Guangyuan, XU Yanfei, WANG Jie, et al. Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 992-1000.
|
14 |
MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chemical Reviews, 2015, 115(14): 6687-6718.
|
15 |
ZHOU X P, JI J, WANG D, et al. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins[J]. Chemical Communications, 2015, 51(42): 8853-8856.
|
16 |
ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907.
|
17 |
DAI C Y, ZHAO X, HU B R, et al. Effect of EDTA-2Na modification on Fe-Co/Al2O3 for hydrogenation of carbon dioxide to lower olefins and gasoline[J]. Journal of CO2 Utilization, 2021, 43: 101369.
|
18 |
吴建民, 孙启文, 张宗森, 等. 费托合成铁基催化剂上CO和H2的吸附特性[J]. 过程工程学报, 2013, 13(2): 327-332.
|
|
WU Jianmin, SUN Qiwen, ZHANG Zongsen, et al. Chemisorption characteristics of CO and H2 over iron-based Fischer-Tropsch synthesis catalyst[J]. The Chinese Journal of Process Engineering, 2013, 13(2): 327-332.
|
19 |
翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京: 化学工业出版社, 2010: 291-299.
|
|
WENG S F. Fourier fransform infrared spectromatry[M]. 2nd ed. Beijing: Chemical Industry Press, 2010: 291-299.
|
20 |
毛菀钰, 孙启文, 应卫勇, 等. 高温沉淀铁基催化剂上费托合成含氧化合物生成机理的研究[J]. 燃料化学学报, 2013, 41(3): 314-322.
|
|
MAO Wanyu, SUN Qiwen, YING Weiyong, et al. Mechanism of oxygenates formation in high temperature Fischer-Tropsch synthesis over the precipitated iron-based catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 314-322.
|
21 |
LAVALLEY J C, SAUSSEY J, LAMOTTE J, et al. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. The Journal of Physical Chemistry, 1990, 94(15): 5941-5947.
|
22 |
WANG Weiwei, QU Zhenping, SONG Lixin, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1-xZrxO2 catalyst for CO2 hydrogenation to CH3OH[J]. Journal of Energy Chemistry, 2020, 47: 18-28.
|