Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 750-758.DOI: 10.16085/j.issn.1000-6613.2021-0631
• Industrial catalysis • Previous Articles Next Articles
Received:
2021-03-29
Revised:
2021-06-29
Online:
2022-02-23
Published:
2022-02-05
Contact:
ZHENG Qingqing
通讯作者:
郑庆庆
CLC Number:
ZHENG Qingqing. Influence of pore structure of USY zeolite on its performance in catalytic cracking of vegetable oil[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 750-758.
郑庆庆. 沸石孔结构对植物油催化裂化性能的影响[J]. 化工进展, 2022, 41(2): 750-758.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0631
沸石 | 相对结晶度/% | 骨架硅铝比 | Na2O/% | SiO2/% | Al2O3/% |
---|---|---|---|---|---|
USYA | 80 | 14.88 | 0.464 | 76.1 | 23.1 |
USYB | 81 | 14.90 | 0.663 | 76.0 | 23.0 |
USYC | 82 | 14.79 | 0.698 | 74.6 | 24.4 |
USYD | 80 | 15.12 | 0.630 | 72.7 | 26.1 |
USYE | 75 | 15.08 | 0.900 | 70.2 | 28.6 |
沸石 | 相对结晶度/% | 骨架硅铝比 | Na2O/% | SiO2/% | Al2O3/% |
---|---|---|---|---|---|
USYA | 80 | 14.88 | 0.464 | 76.1 | 23.1 |
USYB | 81 | 14.90 | 0.663 | 76.0 | 23.0 |
USYC | 82 | 14.79 | 0.698 | 74.6 | 24.4 |
USYD | 80 | 15.12 | 0.630 | 72.7 | 26.1 |
USYE | 75 | 15.08 | 0.900 | 70.2 | 28.6 |
沸石 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 介孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
USYA | 622 | 562 | 60 | 0.347 | 0.242 | 0.105 |
USYB | 618 | 555 | 63 | 0.391 | 0.249 | 0.142 |
USYC | 617 | 540 | 77 | 0.428 | 0.239 | 0.189 |
USYD | 600 | 512 | 88 | 0.440 | 0.246 | 0.194 |
USYE | 551 | 455 | 96 | 0.401 | 0.187 | 0.214 |
沸石 | BET比表面积/m2·g-1 | 微孔面积/m2·g-1 | 介孔面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
USYA | 622 | 562 | 60 | 0.347 | 0.242 | 0.105 |
USYB | 618 | 555 | 63 | 0.391 | 0.249 | 0.142 |
USYC | 617 | 540 | 77 | 0.428 | 0.239 | 0.189 |
USYD | 600 | 512 | 88 | 0.440 | 0.246 | 0.194 |
USYE | 551 | 455 | 96 | 0.401 | 0.187 | 0.214 |
沸石 | 骨架四配位铝 | 非骨架五配位铝 | 非骨架六配位铝 |
---|---|---|---|
USYA | 42.9 | 34.9 | 22.2 |
USYB | 51.0 | 27.4 | 21.6 |
USYC | 40.8 | 38.8 | 20.4 |
USYD | 41.0 | 37.0 | 22.0 |
USYE | 43.5 | 31.7 | 24.8 |
沸石 | 骨架四配位铝 | 非骨架五配位铝 | 非骨架六配位铝 |
---|---|---|---|
USYA | 42.9 | 34.9 | 22.2 |
USYB | 51.0 | 27.4 | 21.6 |
USYC | 40.8 | 38.8 | 20.4 |
USYD | 41.0 | 37.0 | 22.0 |
USYE | 43.5 | 31.7 | 24.8 |
催化裂化产物 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
干气 | 1.58 | 1.62 | 1.57 | 1.43 | 1.40 |
液化石油气 | 15.27 | 15.00 | 13.43 | 12.52 | 12.70 |
汽油 | 37.26 | 37.11 | 37.23 | 37.50 | 37.21 |
柴油 | 24.34 | 25.10 | 26.18 | 26.78 | 27.20 |
渣油 | 3.68 | 3.90 | 3.87 | 3.70 | 3.74 |
焦炭 | 5.14 | 4.21 | 4.60 | 4.82 | 4.71 |
汽柴油之和 | 61.60 | 62.21 | 63.41 | 64.28 | 64.40 |
损失 | 12.73 | 13.06 | 13.12 | 13.25 | 13.04 |
催化裂化产物 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
干气 | 1.58 | 1.62 | 1.57 | 1.43 | 1.40 |
液化石油气 | 15.27 | 15.00 | 13.43 | 12.52 | 12.70 |
汽油 | 37.26 | 37.11 | 37.23 | 37.50 | 37.21 |
柴油 | 24.34 | 25.10 | 26.18 | 26.78 | 27.20 |
渣油 | 3.68 | 3.90 | 3.87 | 3.70 | 3.74 |
焦炭 | 5.14 | 4.21 | 4.60 | 4.82 | 4.71 |
汽柴油之和 | 61.60 | 62.21 | 63.41 | 64.28 | 64.40 |
损失 | 12.73 | 13.06 | 13.12 | 13.25 | 13.04 |
组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
甲烷 | 0.27 | 0.31 | 0.24 | 0.27 | 0.27 |
乙烷 | 0.35 | 0.37 | 0.29 | 0.31 | 0.31 |
乙烯 | 0.97 | 0.96 | 0.89 | 0.86 | 0.84 |
丙烷 | 1.16 | 1.18 | 0.99 | 0.86 | 0.85 |
丙烯 | 5.64 | 5.61 | 4.91 | 4.86 | 4.95 |
异丁烷 | 4.41 | 4.24 | 3.72 | 3.39 | 3.40 |
正丁烷 | 0.67 | 0.66 | 0.52 | 0.49 | 0.48 |
反丁烯 | 1.20 | 1.13 | 1.02 | 0.95 | 1.07 |
正丁烯 | 0.74 | 0.70 | 0.58 | 0.55 | 0.61 |
异丁烯 | 0.74 | 0.73 | 0.58 | 0.56 | 0.62 |
顺式丁烯 | 0.79 | 0.75 | 0.67 | 0.62 | 0.70 |
氢转移指数 | 0.69 | 0.68 | 0.67 | 0.63 | 0.59 |
组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
甲烷 | 0.27 | 0.31 | 0.24 | 0.27 | 0.27 |
乙烷 | 0.35 | 0.37 | 0.29 | 0.31 | 0.31 |
乙烯 | 0.97 | 0.96 | 0.89 | 0.86 | 0.84 |
丙烷 | 1.16 | 1.18 | 0.99 | 0.86 | 0.85 |
丙烯 | 5.64 | 5.61 | 4.91 | 4.86 | 4.95 |
异丁烷 | 4.41 | 4.24 | 3.72 | 3.39 | 3.40 |
正丁烷 | 0.67 | 0.66 | 0.52 | 0.49 | 0.48 |
反丁烯 | 1.20 | 1.13 | 1.02 | 0.95 | 1.07 |
正丁烯 | 0.74 | 0.70 | 0.58 | 0.55 | 0.61 |
异丁烯 | 0.74 | 0.73 | 0.58 | 0.56 | 0.62 |
顺式丁烯 | 0.79 | 0.75 | 0.67 | 0.62 | 0.70 |
氢转移指数 | 0.69 | 0.68 | 0.67 | 0.63 | 0.59 |
汽油组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
正构烷烃 | 2.25 | 2.44 | 2.48 | 2.48 | 2.50 |
异构烷烃 | 29.73 | 30.80 | 31.58 | 30.71 | 31.08 |
烯烃 | 15.82 | 17.03 | 17.48 | 18.47 | 19.39 |
环烷烃 | 8.98 | 9.57 | 9.67 | 9.18 | 9.54 |
芳烃 | 38.19 | 36.30 | 33.01 | 32.71 | 32.21 |
汽油组成 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
正构烷烃 | 2.25 | 2.44 | 2.48 | 2.48 | 2.50 |
异构烷烃 | 29.73 | 30.80 | 31.58 | 30.71 | 31.08 |
烯烃 | 15.82 | 17.03 | 17.48 | 18.47 | 19.39 |
环烷烃 | 8.98 | 9.57 | 9.67 | 9.18 | 9.54 |
芳烃 | 38.19 | 36.30 | 33.01 | 32.71 | 32.21 |
汽油指标 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
研究法辛烷值(RON) | 90.6 | 90.5 | 88.4 | 87.9 | 88.3 |
马达法辛烷值(MON) | 76.2 | 76.1 | 74.3 | 74.2 | 74.5 |
抗爆指数 | 83.4 | 83.3 | 81.4 | 81.0 | 81.4 |
汽油指标 | CatA | CatB | CatC | CatD | CatE |
---|---|---|---|---|---|
研究法辛烷值(RON) | 90.6 | 90.5 | 88.4 | 87.9 | 88.3 |
马达法辛烷值(MON) | 76.2 | 76.1 | 74.3 | 74.2 | 74.5 |
抗爆指数 | 83.4 | 83.3 | 81.4 | 81.0 | 81.4 |
催化裂化产物 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
干气 | 1.65 | 1.55 | 1.45 | 1.40 |
液化石油气 | 14.73 | 13.54 | 12.92 | 12.37 |
汽油 | 38.35 | 37.19 | 38.76 | 37.37 |
柴油 | 24.67 | 27.28 | 26.62 | 27.27 |
渣油 | 3.49 | 3.59 | 3.51 | 4.17 |
焦炭 | 4.02 | 3.82 | 3.74 | 4.45 |
汽柴油收率之和 | 63.02 | 64.47 | 65.38 | 64.64 |
损失 | 13.09 | 13.03 | 13.00 | 13.07 |
催化裂化产物 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
干气 | 1.65 | 1.55 | 1.45 | 1.40 |
液化石油气 | 14.73 | 13.54 | 12.92 | 12.37 |
汽油 | 38.35 | 37.19 | 38.76 | 37.37 |
柴油 | 24.67 | 27.28 | 26.62 | 27.27 |
渣油 | 3.49 | 3.59 | 3.51 | 4.17 |
焦炭 | 4.02 | 3.82 | 3.74 | 4.45 |
汽柴油收率之和 | 63.02 | 64.47 | 65.38 | 64.64 |
损失 | 13.09 | 13.03 | 13.00 | 13.07 |
组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
甲烷 | 0.31 | 0.28 | 0.26 | 0.27 |
乙烷 | 0.38 | 0.37 | 0.34 | 0.32 |
乙烯 | 0.96 | 0.91 | 0.85 | 0.82 |
丙烷 | 1.23 | 1.13 | 1.05 | 0.85 |
丙烯 | 5.49 | 5.15 | 4.96 | 4.75 |
异丁烷 | 4.18 | 3.78 | 3.55 | 3.33 |
正丁烷 | 0.66 | 0.58 | 0.56 | 0.48 |
反丁烯 | 1.12 | 1.02 | 0.99 | 1.05 |
正丁烯 | 0.66 | 0.61 | 0.62 | 0.59 |
异丁烯 | 0.65 | 0.59 | 0.57 | 0.59 |
顺式丁烯 | 0.73 | 0.68 | 0.70 | 0.65 |
氢转移指数 | 0.70 | 0.68 | 0.66 | 0.61 |
组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
甲烷 | 0.31 | 0.28 | 0.26 | 0.27 |
乙烷 | 0.38 | 0.37 | 0.34 | 0.32 |
乙烯 | 0.96 | 0.91 | 0.85 | 0.82 |
丙烷 | 1.23 | 1.13 | 1.05 | 0.85 |
丙烯 | 5.49 | 5.15 | 4.96 | 4.75 |
异丁烷 | 4.18 | 3.78 | 3.55 | 3.33 |
正丁烷 | 0.66 | 0.58 | 0.56 | 0.48 |
反丁烯 | 1.12 | 1.02 | 0.99 | 1.05 |
正丁烯 | 0.66 | 0.61 | 0.62 | 0.59 |
异丁烯 | 0.65 | 0.59 | 0.57 | 0.59 |
顺式丁烯 | 0.73 | 0.68 | 0.70 | 0.65 |
氢转移指数 | 0.70 | 0.68 | 0.66 | 0.61 |
汽油组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
正构烷烃 | 2.09 | 2.63 | 2.32 | 2.08 |
异构烷烃 | 25.44 | 26.31 | 27.19 | 25.67 |
烯烃 | 14.89 | 14.95 | 14.73 | 14.36 |
环烷烃 | 9.82 | 11.40 | 10.48 | 9.59 |
芳烃 | 41.41 | 41.91 | 41.57 | 37.91 |
汽油组成 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
正构烷烃 | 2.09 | 2.63 | 2.32 | 2.08 |
异构烷烃 | 25.44 | 26.31 | 27.19 | 25.67 |
烯烃 | 14.89 | 14.95 | 14.73 | 14.36 |
环烷烃 | 9.82 | 11.40 | 10.48 | 9.59 |
芳烃 | 41.41 | 41.91 | 41.57 | 37.91 |
汽油指标 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
研究法辛烷值(RON) | 92.2 | 90.0 | 89.3 | 87.8 |
马达法辛烷值(MON) | 77.5 | 75.1 | 73.5 | 74.1 |
抗爆指数 | 84.9 | 82.6 | 81.4 | 81.0 |
汽油指标 | CatB | CatC | CatD | CatE |
---|---|---|---|---|
研究法辛烷值(RON) | 92.2 | 90.0 | 89.3 | 87.8 |
马达法辛烷值(MON) | 77.5 | 75.1 | 73.5 | 74.1 |
抗爆指数 | 84.9 | 82.6 | 81.4 | 81.0 |
1 | ADEKUNLE A S, OYEKUNLE J A O, ODUWALE A I, et al. Biodiesel potential of used vegetable oils transesterified with biological catalysts[J]. Energy Reports, 2020, 6: 2861-2871. |
2 | PIMENTA J L C W, DE OLIVEIRA CAMARGO M, BELO DUARTE R, et al. Deoxygenation of vegetable oils for the production of renewable diesel: improved aerogel based catalysts[J]. Fuel, 2021, 290: 119979. |
3 | NAUSHAD M, AHAMAD T, KHAN M R. Fabrication of magnetic nanoparticles supported ionic liquid catalyst for transesterification of vegetable oil to produce biodiesel[J]. Journal of Molecular Liquids, 2021, 330: 115648. |
4 | JAHROMI H, ADHIKARI S, ROY P, et al. Production of green transportation fuels from Brassica carinata oil: a comparative study of noble and transition metal catalysts[J]. Fuel Processing Technology, 2021, 215: 106737. |
5 | DAS A K, CHAVAN A S, SHILL D C, et al. Jatropha Curcas oil for distribution transformer—A comparative review[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101259. |
6 | RUBAN M, KARIKALAN L, KANTI CHAKRABORTY S. Performances and emissions characteristics of diesel engine by using Jatropha oil[J]. Materials Today: Proceedings, 2021, 37: 631-633. |
7 | SHIRASAKI Y, NASU H, HASHIMOTO T, et al. Effects of types of zeolite and oxide and preparation methods on dehydrocyclization-cracking of soybean oil using hierarchical zeolite-oxide composite-supported Pt/NiMo sulfided catalysts[J]. Fuel Processing Technology, 2019, 194: 106109. |
8 | SONTHALIA A, KUMAR N. Hydroprocessed vegetable oil as a fuel for transportation sector: a review[J]. Journal of the Energy Institute, 2019, 92(1): 1-17. |
9 | NEGM N A, RABIE A M, MOHAMMED E A. Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation[J]. Applied Catalysis B: Environmental, 2018, 239: 36-45. |
10 | MAMMADOVA T, ABBASOV M, MOVSUMOV N, et al. Production of diesel fractions by catalytic cracking of vacuum gas oil and its mixture with cottonseed oil under the influence of a magnetic field[J]. Egyptian Journal of Petroleum, 2018, 27(4): 1029-1033. |
11 | SAJJADI B, RAMAN A A A, ARANDIYAN H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 62-92. |
12 | ABBASOV V, MAMMADOVA T, ALIYEVA N, et al. Catalytic cracking of vegetable oils and vacuum gasoil with commercial high alumina zeolite and halloysite nanotubes for biofuel production[J]. Fuel, 2016, 181: 55-63. |
13 | RAMKUMAR S, KIRUBAKARAN V. Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: a critical review[J]. Energy Conversion and Management, 2016, 118: 155-169. |
14 | 王海京, 杜泽学, 高国强. 植物油近/超临界醇解制备生物柴油[J]. 化工进展, 2017, 36(6): 2131-2136. |
WANG Haijing, DU Zexue, GAO Guoqiang. Preparation of biodiesel from vegetable oil by sub/supercritical alcoholysis[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2131-2136. | |
15 | IDEM R O, KATIKANENI S P R, BAKHSHI N N. Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution[J]. Fuel Processing Technology, 1997, 51(1/2): 101-125. |
16 | KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils[J]. Energy & Fuels, 1995, 9(6): 1065-1078. |
17 | BHATIA S, LENG C T, TAMUNAIDU P. Modeling and simulation of transport riser reactor for catalytic cracking of palm oil for the production of biofuels[J]. Energy & Fuels, 2007, 21(6): 3076-3083. |
18 | TAMUNAIDU P, BHATIA S. Catalytic cracking of palm oil for the production of biofuels: optimization studies[J]. Bioresource Technology, 2007, 98(18): 3593-3601. |
19 | PRASAD Y S, BAKHSHI N N, MATHEWS J F, et al. Catalytic conversion of canola oil to fuels and chemical feedstocks: Part Ⅱ Effect of co-feeding steam on the performance of HZSM-5 catalyst[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 285-292. |
20 | TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237. |
21 | DORONIN V P, POTAPENKO O V, LIPIN P V, et al. Conversion of vegetable oils under conditions of catalytic cracking[J]. Catalysis in Industry, 2014, 6(1): 53-59. |
22 | TIAN H, LI C Y, YANG C H, et al. Alternative processing technology for converting vegetable oils and animal fats to clean fuels and light olefins[J]. Chinese Journal of Chemical Engineering, 2008, 16(3): 394-400. |
23 | LI L, QUAN K J, XU J M, et al. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst[J]. Fuel, 2014, 123: 189-193. |
24 | 申宝剑, 高雄厚, 曾鹏辉, 等. 一种高硅铝比小晶粒NaY分子筛: CN1785807A[P]. 2006-06-14. |
SHEN B J, GAO X H, ZENG P H, et al. High silicon aluminium ratio small crystal NaY molecular sieve: CN1785807A[P]. 2006-06-14. | |
25 | ZHENG Q Q, HUO L, LI H Y, et al. Exploring structural features of USY zeolite in the catalytic cracking of Jatropha Curcas L. seed oil towards higher gasoline/diesel yield and lower CO2 emission[J]. Fuel, 2017, 202: 563-571. |
26 | QIN Z X, SHEN B J, GAO X H, et al. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene[J]. Journal of Catalysis, 2011, 278(2): 266-275. |
27 | YAN Z M, MA D, ZHUANG J Q, et al. On the acid-dealumination of USY zeolite: a solid state NMR investigation[J]. Journal of Molecular Catalysis A: Chemical, 2003, 194(1/2): 153-167. |
28 | 喻志武, 郑安民, 王强, 等. 固体核磁共振研究固体酸催化剂酸性进展[J]. 波谱学杂志, 2010, 27(4): 485-515. |
YU Zhiwu, ZHENG Anmin, WANG Qiang, et al. Acidity characterization of solid acid catalysts by solid-state NMR spectroscopy: a review on recent progresses[J]. Chinese Journal of Magnetic Resonance, 2010, 27(4): 485-515. | |
29 | KATIKANENI S P R, ADJAYE J D, BAKHSHI N N. Studies on the catalytic conversion of canola oil to hydrocarbons: influence of hybrid catalysts and steam[J]. Energy & Fuels, 1995, 9(4): 599-609. |
30 | KATIKANENI S P R, ADJAYE J D, IDEM R O, et al. Catalytic conversion of canola oil over potassium-impregnated HZSM-5 catalysts: C2-C4 olefin production and model reaction studies[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3332-3346. |
31 | ADJAYE J D, BAKHSHI N N. Catalytic conversion of a biomass-derived oil to fuels and chemicals Ⅰ: model compound studies and reaction pathways[J]. Biomass and Bioenergy, 1995, 8(3): 131-149. |
32 | CORMA A, FORNES V, MARTINEZ A, et al. Influence of the method of dealumination of Y zeolites on its behaviour for cracking N-heptane and vacuum gas-oil[J]. Studies in Surface Science and Catalysis, 1988, 37: 495-503. |
33 | SCHERZER J. Zeolitic FCC catalysts: scientific and technical aspects[J]. Cat. Rev., 1989, 31(3): 215-354. |
34 | WIELERS A F H, VAARKAMP M, POST M F M. Relation between properties and performance of zeolites in paraffin cracking[J]. Journal of Catalysis, 1991, 127(1): 51-66. |
35 | MAHESHWARI S, MARTÍNEZ C, TERESA PORTILLA M, et al. Influence of layer structure preservation on the catalytic properties of the pillared zeolite MCM-36[J]. Journal of Catalysis, 2010, 272(2): 298-308. |
36 | AITANI A, YOSHIKAWA T, INO T. Maximization of FCC light olefins by high severity operation and ZSM-5 addition[J]. Catalysis Today, 2000, 60(1/2): 111-117. |
37 | ARANDES J M, ABAJO I, FERNÁNDEZ I, et al. Effect of HZSM-5 zeolite addition to a fluid catalytic cracking catalyst. Study in a laboratory reactor operating under industrial conditions[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1917-1924. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[8] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |