Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 537-553.DOI: 10.16085/j.issn.1000-6613.2021-0644
• Chemical processes and equipment • Previous Articles Next Articles
CHEN Long(), LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin()
Received:
2021-03-30
Revised:
2021-06-30
Online:
2022-02-23
Published:
2022-02-05
Contact:
WU Binxin
通讯作者:
吴斌鑫
作者简介:
陈龙(1988—),男,博士后,研究方向为计算流体力学。E-mail:基金资助:
CLC Number:
CHEN Long, LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin. Research progress in computational fluid dynamics simulation of melt-blown fabric production[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 537-553.
陈龙, 李霞霞, 李伟祥, 戚锐, 邓鑫, 吴斌鑫. 聚丙烯非织造布熔喷过程的计算流体力学模拟研究进展[J]. 化工进展, 2022, 41(2): 537-553.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0644
1 | 贾春红. 大容量复合纺丝组件的关键技术研究[D]. 上海: 东华大学, 2009. |
JIA Chunhong. Study on the key techniques of large-capacity complex spinning component[D]. Shanghai: Donghua University, 2009. | |
2 | 孟凯. 熔喷非织造模头设计中几个问题的研究[D]. 上海: 东华大学, 2009. |
MENG Kai. An investigation into some aspects relating to the design of melt blowing nonwoven die[D]. Shanghai: Donghua University, 2009. | |
3 | 桂有军, 武化北, 罗锐, 等. 熔喷板模头喷丝孔的加工方法: CN111702323A[P]. 2020-09-25. |
GUI Youjun, WU Huabei, LUO Rui, et al. Melt-blown plate die head spinneret orifice machining method: CN111702323A[P]. 2020-09-25. | |
4 | 程鹏达, 钟宝昌, 王道增. 无纺织布喷熔射流拖网表面流场特性研究[J]. 水动力学研究与进展(A辑), 2009, 24(6): 686-695. |
CHENG Pengda, ZHONG Baochang, WANG Daozeng. Study on the collecting web flow characteristics of melt-blown jet[J]. Journal of Hydrodynamics (SerA), 2009, 24(6): 686-695. | |
5 | 刘博文, 曾泳春, 王云侠, 等. 利用数值模拟和多目标遗传算法优化熔喷狭槽流场[J]. 东华大学学报(自然科学版), 2011, 37(6): 683-688, 707. |
LIU Bowen, ZENG Yongchun, WANG Yunxia, et al. Optimization air flow field of the melt blowing slot die via numerical simulation and multi-objective genetic algorithm[J]. Journal of Donghua University(Natural Science), 2011, 37(6): 683-688, 707. | |
6 | 辛三法. 熔喷非织造工艺中纤维成形机理的研究[D]. 上海: 东华大学, 2013. |
XIN Sanfa. Mechanism of fiber formation in melt blowing[D]. Shanghai: Donghua University, 2013. | |
7 | 孙光武. 熔喷纤网形态及均匀性的预测研究[D]. 上海: 东华大学, 2017. |
SUN Guangwu. Prediction of the morphology and uniformity of melt-blown fibrous web[D]. Shanghai: Donghua University, 2017. | |
8 | 陈廷. 熔喷非织造气流拉伸工艺研究[D]. 上海: 东华大学, 2003. |
CHEN Ting. Study on the air drawing in melt blowing nonwoven process[D]. Shanghai: Donghua University, 2003. | |
9 | SHAMBAUGH R L. A macroscopic view of the melt-blowing process for producing microfibers[J]. Industrial & Engineering Chemistry Research, 1988, 27(12): 2363-2372. |
10 | SCHWARZ E C A. Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby: US4380570[P]. 1983-04-19. |
11 | WU T T, SHAMBAUGH R L. Characterization of the melt blowing process with laser doppler velocimetry[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 379-389. |
12 | TYAGI M K, SHAMBAUGH R L. Use of oscillating gas jets in fiber processing[J]. Industrial & Engineering Chemistry Research, 1995, 34(2): 656-660. |
13 | BANSAL V, SHAMBAUGH R L. On-line determination of diameter and temperature during melt blowing of polypropylene[J]. Industrial & Engineering Chemistry Research, 1998, 37(5): 1799-1806. |
14 | UYTTENDAELE M A J, SHAMBAUGH R L. The flow field of annular jets at moderate Reynolds numbers[J]. Industrial & Engineering Chemistry Research, 1989, 28(11): 1735-1740. |
15 | MAJUMDAR B, SHAMBAUGH R L. Velocity and temperature fields of annular jets[J]. Industrial & Engineering Chemistry Research, 1991, 30(6): 1300-1306. |
16 | HARPHAM A S, SHAMBAUGH R L. Flow field of practical dual rectangular jets[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3776-3781. |
17 | CHHABRA R, SHAMBAUGH R L. Experimental measurements of fiber threadline vibrations in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 4366-4374. |
18 | HARPHAM A S, SHAMBAUGH R L. Velocity and temperature fields of dual rectangular jets[J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3937-3943. |
19 | TATE B D, SHAMBAUGH R L. Modified dual rectangular jets for fiber production[J]. Industrial & Engineering Chemistry Research, 1998, 37(9): 3772-3779. |
20 | MARLA V T, SHAMBAUGH R L, PAPAVASSILIOU D V. Modeling the melt blowing of hollow fibers[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 407-415. |
21 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Effects of the polymer fiber on the flow field from a slot melt blowing die[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 935-945. |
22 | SHAMBAUGH B R, PAPAVASSILIOU D V, SHAMBAUGH R L. Next-generation modeling of melt blowing[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12233-12245. |
23 | SHAMBAUGH B R, PAPAVASSILIOU D V, SHAMBAUGH R L. Modifying air fields to improve melt blowing[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3472-3482. |
24 | SHAMBAUGH R L, KRUTTY J D, SINGLETON S M. Melt blowing dies with louvers[J]. Industrial & Engineering Chemistry Research, 2015, 54(51): 12999-13004. |
25 | FOLEY K A, SHAMBAUGH R L. Fiber spinning with airfields enhanced by airfoil louvers[J]. Textile Research Journal, 2019, 89(15): 3150-3158. |
26 | MOHAMMED A, SHAMBAUGH R L. Three-dimensional temperature field of a rectangular array of practical air jets[J]. Industrial & Engineering Chemistry Research, 1994, 33(3): 730-735. |
27 | KAYSER J C, SHAMBAUGH R L. The manufacture of continuous polymeric filaments by the melt-blowing process[J]. Polymer Engineering and Science, 1990, 30(19): 1237-1251. |
28 | UYTTENDAELE M A J, SHAMBAUGH R L. Melt blowing: general equation development and experimental verification[J]. AIChE Journal, 1990, 36(2): 175-186. |
29 | RAO R S, SHAMBAUGH R L. Vibration and stability in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3100-3111. |
30 | MARLA V T, SHAMBAUGH R L. Three-dimensional model of the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2003, 42(26): 6993-7005. |
31 | 郭燕坤. 熔喷非织造用衣架型模头的研究[D]. 上海: 东华大学, 2005. |
GUO Yankun. Study on the coathanger die of melt-blown nonwoven system[D]. Shanghai: Donghua University, 2005. | |
32 | 韩万里. 熔喷非织造模头宽幅化和纤维纳米化的研究[D]. 上海: 东华大学, 2014. |
HAN Wanli. Design of the wide coat-hanger die and the fabrication of nanofiber in melt blowing process[D]. Shanghai: Donghua University, 2014. | |
33 | 郭燕坤, 崔毅华, 王新厚. 熔喷非织造衣架型模头中聚合物流动数值模拟[J]. 纺织学报, 2006, 27(10): 18-21. |
GUO Yankun, CUI Yihua, WANG Xinhou. Numerical simulation of polymer flow in the coat-hanger die of melt blown process[J]. Journal of Textile Research, 2006, 27(10): 18-21. | |
34 | MENG K, WANG X H, HUANG X B. Optimal design of the coat-hanger die used for producing melt-blown fabrics by finite element method and evolution strategies[J]. Polymer Engineering & Science, 2009, 49(2): 354-358. |
35 | MENG K, WANG X H, HUANG X B. Numerical analysis of the stagnation phenomenon in the coat-hanger die of melt blowing process[J]. Journal of Applied Polymer Science, 2008, 108(4): 2523-2527. |
36 | HAN W L, WANG X H, Bhat G S. Structure and air permeability of melt blown nanofiber webs[J]. Journal of Nanomaterials & Molecular Nanotechnology, 2015, 2(3). DOI: 10.4172/2324-8777.1000115. |
37 | HAN W L, WANG X H. Optimal geometry design of the coat‐hanger die with uniform outlet velocity and minimal residence time[J]. Journal of Applied Polymer Science, 2012, 123(4): 2511-2516. |
38 | HAN W, WANG X. Multi-objective optimization of the coat-hanger die for melt-blowing process[J]. Fibers and Polymers, 2012, 13(5): 626-631. |
39 | NURWAHA D, HAN W L, WANG X H. Investigation of a new needleless electrospinning method for the production of nanofibers[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(4): 42-44. |
40 | HAN W L, NURWAHA D, LI C L, et al. Free surface electrospun fibers: the combined effect of processing parameters[J]. Polymer Engineering & Science, 2014, 54(1): 189-197. |
41 | NURWAHA D, HAN W L, WANG X H. Effects of processing parameters on electrospun fiber morphology[J]. The Journal of the Textile Institute, 2013, 104(4): 419-425. |
42 | 曾泳春, 郁崇文. 气流/纤维两相流动的数值计算和实验的研究[J]. 东华大学学报(自然科学版), 2002, 28(3): 109-113. |
ZENG Yongchun, YU Chongwen. Study of numerical computation and experimental research of air/fiber two phase flow[J]. Journal of Donghua University(Natural Science Edition), 2002, 28(3): 109-113. | |
43 | 曾泳春, 郁崇文. 喷气纺喷嘴中气流流动的数值计算[J]. 东华大学学报(自然科学版), 2002, 28(5): 13-18. |
ZENG Yongchun, YU Chongwen. Numerical computation of air flow in the nozzle of air-jet spinning[J]. Journal of Donghua University(Natural Science Edition), 2002, 28(5): 13-18. | |
44 | 曾泳春. 纤维在喷嘴高速气流场中运动的研究和应用[D]. 上海: 东华大学, 2004. |
ZENG Yongchun. Study on fiber motion in high speed airflow within the nozzle and its application[D]. Shanghai: Donghua University, 2004. | |
45 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Analysis of a melt-blowing die: comparison of CFD and experiments[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5125-5138. |
46 | KRUTKA H M, SHAMBAUGH R L, PAPAVASSILIOU D V. Effects of die geometry on the flow field of the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2003, 42(22): 5541-5553. |
47 | 赵楼杰. 熔喷模头喷嘴孔流场速度和温度分布的模拟[D]. 上海: 东华大学, 2010. |
ZHAO Loujie. Simulation on the flow field of a dual slot die in the melt-blown process[D]. Shanghai: Donghua University, 2010. | |
48 | 刘博文. 利用数值模拟和遗传算法优化熔喷流场[D]. 上海: 东华大学, 2011. |
LIU Bowen. Optimize air flow field of the melt blowing slot die via numerical simulation and multi-objective genetic algorithm[D]. Shanghai: Donghua University, 2011. | |
49 | 常峪萄. 纳米颗粒复合熔喷流场的数值模拟与分析[D]. 天津: 天津工业大学, 2011. |
CHANG Yutao. Numerical simulation and analysis of nanoparticles composite melt blown flow field[D]. Tianjin: Tianjin Polytechnic University, 2011. | |
50 | 许川. 熔喷非织造喷射流场的数值模拟与实验测试[D]. 苏州: 苏州大学, 2012. |
XU Chuan. Numerical simulation and experimental study on the air jet flow field of the melt blowing process[D]. Suzhou: Soochow University, 2012. | |
51 | 成园玲. 加装辅助喷嘴的熔喷气体流场研究[D]. 苏州: 苏州大学, 2013. |
CHENG Yuanling. Study on the air flow field in the melt blowing process with an auxiliary nozzle[D]. Suzhou: Soochow University, 2013. | |
52 | 董家斌. 加装辅助喷嘴的熔喷非织造聚合物拉伸模型[D]. 苏州: 苏州大学, 2013. |
DONG Jiabin. Polymer drawing model of the melt blowing process equipped with the auxiliary nozzle[D]. Suzhou: Soochow University, 2013. | |
53 | 黄冬徽. 周向排列倾斜气流喷嘴组气体流场研究[D]. 苏州: 苏州大学, 2015. |
HUANG Donghui. Study on the air flow field of circumferential arranged oblique nozzle grouping[D]. Suzhou: Soochow University, 2015. | |
54 | 杨康. 组合气体流场中的熔喷聚合物拉伸模型[D]. 苏州: 苏州大学, 2016. |
YANG Kang. Polymer drawing model in the combined air flow field of the melt blowing process[D]. Suzhou: Soochow University, 2016. | |
55 | 承婷婷. 加装辅助喷嘴的熔喷非织造气体流场及聚合物拉伸研究[D]. 苏州: 苏州大学, 2014. |
CHENG Tingting. Study on the air flow field and polymer drawing of the melt blowing process with an auxiliary nozzle[D]. Suzhou: Soochow University, 2014. | |
56 | HASSAN M A, ANANTHARAMAIAH N, KHAN S A, et al. Computational fluid dynamics simulations and experiments of meltblown fibrous media: new die designs to enhance fiber attenuation and filtration quality[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 2049-2058. |
57 | 王玉栋. 熔喷气流场的分析与优化[D]. 上海: 东华大学, 2014. |
WANG Yudong. Analysis and optimization of air flow field in melt-blowing processing[D]. Shanghai: Donghua University, 2014. | |
58 | 姬长春, 张开源, 王玉栋, 等. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(8): 175-180. |
JI Changchun, ZHANG Kaiyuan, WANG Yudong, et al. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(8): 175-180. | |
59 | 陈廷, 黄秀宝. 对熔喷气流拉伸一维数学模型的改进研究[J]. 中国纺织大学学报, 2000, 26(1): 1-5. |
CHEN Ting, HUANG Xiubao. Study on the improvement in the one Dimensional Mathematical model of the air dragin melt blowing process[J]. Journal of China Textile University, 2000, 26(1): 1-5. | |
60 | 王晓梅. 熔喷工艺气流对纤维运动及热熔纤网质量影响的研究[D]. 上海: 东华大学, 2005. |
WANG Xiaomei. Study of the effects of airflow on fiber motion and the adhesive web quality in melt blowing process[D]. Shanghai: Donghua University, 2005. | |
61 | WANG X M, KE Q F. Experimental investigation of adhesive meltblown web production using accessory air[J]. Polymer Engineering & Science, 2006, 46(1): 1-7. |
62 | WANG X M, KE Q F. Empirical formulas for distributions of air velocity/temperature along the spinline of a dual slot die[J]. Polymer Engineering & Science, 2005, 45(8): 1092-1097. |
63 | WANG X M, KE Q F. Computational simulation of the fiber movement in the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2005, 44(11): 3912-3917. |
64 | 张冲. 基于喷射流场数值模拟的熔喷聚合物拉伸三维模型[D]. 上海: 东华大学, 2009. |
ZHANG Chong. Three dimensional poymer drawing model of melt blowing process based on numerical simulations of the air jet flow field[D]. Shanghai: Donghua University, 2009. | |
65 | 杜利娟, 曾泳春. 基于Fluent的螺旋形喷嘴熔喷流场的数值模拟和试验[J]. 东华大学学报(自然科学版), 2012, 38(6): 676-682. |
DU Lijuan, ZENG Yongchun. Numerical simulation and experiment of melt blowing flow field of swirl nozzle based on Fluent[J]. Journal of Donghua University(Natural Science Edition), 2012, 38(6): 676-682. | |
66 | HAO X B, HUANG H, ZENG Y C. Simulation of jet velocity in the melt-blowing process using the coupled air-polymer model[J]. Textile Research Journal, 2019, 89(16): 3221-3233. |
[1] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[2] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[3] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[6] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[7] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[8] | GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474. |
[9] | XU Hanzhuo, LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen. Research progress in applications and numerical simulation of fluid-driven rotating equipment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2806-2817. |
[10] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[11] | WANG Yanqian, WANG Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 185-191. |
[12] | KANG Jiani, HE Lidong, FAN Wenqiang, YANG Yang. Cause analysis and improvement of T-shaped tee fittings in ethylene oxide plant [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 32-42. |
[13] | WANG Haiqing, SUN Hao, ZHANG Zhixiu. Anti-explosion strength design of control room based on dimensioning accident load [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3543-3552. |
[14] | SUN Jingchen, LIU Hailong, WANG Junfeng, HE Fachao. Flow visualization by PLIF technique and numerical modeling of mixing enhancement in stirred tank under electric fields [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6547-6556. |
[15] | WANG Zhijie, ZHAO Yanlin, YAO Jun. Numerical simulation of flow field characteristics and particle motion behavior in Rushton turbine stirred tank [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6479-6489. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |