Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (12): 6656-6663.DOI: 10.16085/j.issn.1000-6613.2022-0380
• Resources and environmental engineering • Previous Articles Next Articles
PENG Wei1(), HUANG Jian2(), WANG Zhenjie1, LIU Anrong3
Received:
2022-03-13
Revised:
2022-04-27
Online:
2022-12-29
Published:
2022-12-20
Contact:
HUANG Jian
通讯作者:
黄健
作者简介:
彭伟(1989—),男,硕士,工程师,研究方向为矿产综合利用。E-mail:499096104@qq.com。
基金资助:
CLC Number:
PENG Wei, HUANG Jian, WANG Zhenjie, LIU Anrong. Research status of recycling and utilization of valuable metals in tungsten residue[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6656-6663.
彭伟, 黄健, 王振杰, 刘安荣. 钨冶炼渣中有价金属回收利用研究现状[J]. 化工进展, 2022, 41(12): 6656-6663.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0380
有价金属 | 工艺方法 | 主要原理 | 优势 | 劣势 |
---|---|---|---|---|
锡 | 重选 | 锡石相对密度高于其他物质 | 绿色环保,试剂消耗少 | 对微细粒锡石选别效果差 |
浮选 | 浮选药剂与锡石表面活性位点结合,改变疏水性 | 微细粒锡石回收效果较好 | 易受残留表面的试剂影响,降低浮选回收率 | |
钨 | 湿法酸浸 | 强酸溶解至浸出液,再选择性回收钨 | 回收率高,反应条件温和,能耗低 | 除渣工艺复杂,流程较长,成本高 |
火法焙烧 | 杂质成分优先被反应,提高钨的暴露率 | 操作流程短,效率高,杂质量少 | 能耗高,易产生废气 | |
重选+浮选 | 金属钨与其他物质表面性质差异 | 试剂消耗少,流程短 | 粒径对回收效果影响明显 | |
钪 | 湿法酸浸 | 强酸溶解钪氧化物,溶剂萃取法选择性回收 | 针对性强,分离系数高 | 杂质含量高、除杂难度大、试剂消耗量大 |
火法焙烧 | 转变钪氧化物形式,提高溶解度 | 回收率高,杂质含量少 | 能耗高,存在二次污染风险 | |
铁和锰 | 湿法酸浸 | 无机强酸溶解含铁锰的物质,除杂后选择性回收 | 针对性强,回收率高 | 试剂消耗量大,产品较廉价 |
还原焙烧+磁选 | 将铁转化成带磁性物质,磁选选择性分离 | 铁回收率高,杂质少 | 产生大量温室气体,影响锰的回收 | |
钽和铌 | 湿法酸浸 | 无机强酸溶解钽铌物质,溶解后提取分离 | 回收率高,能耗低 | 试剂消耗大,氢氟酸溶解存在安全隐患 |
高温碱溶 | 富集钽铌物质,转化赋存形式 | 避免氢氟酸应用,降低了杂质含量 | 能耗成本高 |
有价金属 | 工艺方法 | 主要原理 | 优势 | 劣势 |
---|---|---|---|---|
锡 | 重选 | 锡石相对密度高于其他物质 | 绿色环保,试剂消耗少 | 对微细粒锡石选别效果差 |
浮选 | 浮选药剂与锡石表面活性位点结合,改变疏水性 | 微细粒锡石回收效果较好 | 易受残留表面的试剂影响,降低浮选回收率 | |
钨 | 湿法酸浸 | 强酸溶解至浸出液,再选择性回收钨 | 回收率高,反应条件温和,能耗低 | 除渣工艺复杂,流程较长,成本高 |
火法焙烧 | 杂质成分优先被反应,提高钨的暴露率 | 操作流程短,效率高,杂质量少 | 能耗高,易产生废气 | |
重选+浮选 | 金属钨与其他物质表面性质差异 | 试剂消耗少,流程短 | 粒径对回收效果影响明显 | |
钪 | 湿法酸浸 | 强酸溶解钪氧化物,溶剂萃取法选择性回收 | 针对性强,分离系数高 | 杂质含量高、除杂难度大、试剂消耗量大 |
火法焙烧 | 转变钪氧化物形式,提高溶解度 | 回收率高,杂质含量少 | 能耗高,存在二次污染风险 | |
铁和锰 | 湿法酸浸 | 无机强酸溶解含铁锰的物质,除杂后选择性回收 | 针对性强,回收率高 | 试剂消耗量大,产品较廉价 |
还原焙烧+磁选 | 将铁转化成带磁性物质,磁选选择性分离 | 铁回收率高,杂质少 | 产生大量温室气体,影响锰的回收 | |
钽和铌 | 湿法酸浸 | 无机强酸溶解钽铌物质,溶解后提取分离 | 回收率高,能耗低 | 试剂消耗大,氢氟酸溶解存在安全隐患 |
高温碱溶 | 富集钽铌物质,转化赋存形式 | 避免氢氟酸应用,降低了杂质含量 | 能耗成本高 |
1 | LIAO Chunfa, XIE Sui, WANG Xu, et al. Thermodynamic and experimental analyses of the carbothermic reduction of tungsten slag[J]. JOM, 2021, 73(6): 1853-1860. |
2 | LIU Hu, LIU Haoling, NIE Chenxi, et al. Comprehensive treatments of tungsten slags in China: a critical review[J]. Journal of Environmental Management, 2020, 270: 110927. |
3 | KIM Joung Woon, LEE Won Geun, HWANG In Sung, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73-77. |
4 | XIAO Luping, JI Lei, YIN Changsheng, et al. Tungsten extraction from scheelite hydrochloric acid decomposition residue by hydrogen peroxide[J]. Minerals Engineering, 2022, 179: 107461. |
5 | LIANG Jingjing, GENG Yong, ZENG Xianlai, et al. Toward sustainable utilization of tungsten: evidence from dynamic substance flow analysis from 2001 to 2019 in China[J]. Resources, Conservation and Recycling, 2022, 182: 106307. |
6 | ZHANG Juan, LIU Xinxing, LI Wei, et al. The metallogenic epoch and geological implications of the tungsten-tin polymetallic deposits in southern Jiangxi province, China: constraints from cassiterite U-Pb and molybdenite re-Os isotopic dating[J]. Ore Geology Reviews, 2021, 134: 104159. |
7 | 陈明, 李凤果, 胡兰文, 等. 赣南典型矿区河流沉积物钨的赋存特征及释放规律[J]. 化工进展, 2019, 38(9): 4320-4326. |
CHEN Ming, LI Fengguo, HU Lanwen, et al. Occurrence and release of tungsten from river depositions in typical mining areas of southern Jiangxi Province[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4320-4326. | |
8 | WANG Xu, QIN Wenqing, JIAO Fen, et al. Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: a case study of Luoyang Yulu Mining Company[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 980-998. |
9 | DONG Mengge, XUE Xiangxin, KUMAR Ashok, et al. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation[J]. Journal of Hazardous Materials, 2018, 344: 602-614. |
10 | SHEN Leiting, LI Xiaobin, LINDBERG Daniel, et al. Tungsten extractive metallurgy: a review of processes and their challenges for sustainability[J]. Minerals Engineering, 2019, 142: 105934. |
11 | QUINTERO Gilberto, BRUNNER Erich, JIMÉNEZ Luz A, et al. Scheelite production from spent electroless nickel solutions as an alternative tungsten recycling source[J]. Hydrometallurgy, 2020, 197: 105453. |
12 | 曹国祥, 唐忠阳, 李江涛, 等. 白钨矿连续酸浸槽内固体颗粒的流动特性实验及模型研究[J]. 化工进展, 2018, 37(12): 4565-4571. |
CAO Guoxiang, TANG Zhongyang, LI Jiangtao, et al. Experimental and modelling studies on flow characteristics of solid particles in a continuous tank for leaching scheelite[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4565-4571. | |
13 | STAWOVY Michael T, MYERS Kyle, Scott OHM. Binder jet printing of tungsten heavy alloy[J]. International Journal of Refractory Metals and Hard Materials, 2019, 83: 104981. |
14 | 万林生, 徐国钻, 严永海, 等. 中国钨冶炼工艺发展历程及技术进步[J]. 中国钨业, 2009, 24(5): 63-66, 92. |
WAN Linsheng, XU Guozuan, YAN Yonghai, et al. The development history and technology progress in China’s tungsten metallurgy[J]. China Tungsten Industry, 2009, 24(5): 63-66, 92. | |
15 | 刘谟禧. 黑钨矿压煮-萃取新工艺在我国的技术发展和工业实践[J]. 稀有金属与硬质合金, 1996, 24(2): 48-50. |
LIU Moxi. Development and commercial practice of digesting-solvent extraction-crystallization technique for processing wolframite in China[J]. Rare Metals and Cemented Carbides, 1996, 24(2): 48-50. | |
16 | GONG Dandan, ZHANG Yong, WAN Linsheng, et al. Efficient extraction of tungsten from scheelite with phosphate and fluoride[J]. Process Safety and Environmental Protection, 2022, 159: 708-715. |
17 | 廖利波, 董伟. 酸法工艺处理白钨精矿的最新进展[J]. 稀有金属与硬质合金, 2005, 33(3): 29-31. |
LIAO Libo, DONG Wei. The latest development of the acid process for scheelite concentrate[J]. Rare Metals and Cemented Carbides, 2005, 33(3): 29-31. | |
18 | REN Huichuan, LI Jiangtao, TANG Zhongyang, et al. Sustainable and efficient extracting of tin and tungsten from wolframite-scheelite mixed ore with high tin content[J]. Journal of Cleaner Production, 2020, 269: 122282. |
19 | LIU Qingsheng, TU Tao, GUO Hao, et al. Complexation extraction of scheelite and transformation behaviour of tungsten-containing phase using H2SO4 solution with H2C2O4 as complexing agent[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(10): 3150-3161. |
20 | CASTRO-GOMES J P, SILVA A P, CANO R P, et al. Potential for reuse of tungsten mining waste-rock in technical-artistic value added products[J]. Journal of Cleaner Production, 2012, 25: 34-41. |
21 | CHEN Xingyu, GUO Fuliang, CHEN Qiang, et al. Leaching tungsten and rare earth elements from scheelite through H2SO4-H3PO4 mixed acid decomposition[J]. Minerals Engineering, 2020, 156: 106526. |
22 | BEHERA S K, MISHRA D P, SINGH P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. |
23 | 罗仙平, 刘北林, 唐敏康. 从钨冶炼渣中综合回收有价金属的试验研究[J]. 中国钨业, 2005, 20(3): 24-26. |
LUO Xianping, LIU Beilin, TANG Minkang. Experimental lnvestigation of complex recovery of valuable minerals components containing in the residue abandoned in wet-metallurgical process of wolframite ores[J]. China Tungsten Industry, 2005, 20(3): 24-26. | |
24 | 杨俊彦, 张建东, 闫国庆, 等. 一种从白钨冶炼渣回收锡石的方法: CN107858522A[P]. 2018-03-30. |
YANG Junyan, ZHANG Jiandong, YAN Guoqing, et al. Method for recovering cassiterite from scheelite smelting slag: CN107858522A[P]. 2018-03-30. | |
25 | 车小奎, 杨俊彦, 闫国庆, 等. 一种从白钨冶炼渣浮选回收钨锡的方法: CN108114818A[P]. 2018-06-05. |
CHE Xiaokui, YANG Junyan, YAN Guoqing, et al. Method for flotation and recycling of tungsten and tin from scheelite smelting slag: CN108114818A[P]. 2018-06-05. | |
26 | ZEILER Burghard, BARTL Andreas, SCHUBERT Wolf Dieter. Recycling of tungsten: current share, economic limitations, technologies and future potential[J]. International Journal of Refractory Metals and Hard Materials, 2021, 98: 105546. |
27 | 朱心蕊, 刘旭恒, 陈星宇, 等. 钨冶炼渣的综合利用及发展趋势[J]. 矿产保护与利用, 2019, 39(3): 119-124. |
ZHU Xinrui, LIU Xuheng, CHEN Xingyu, et al. Comprehensive utilization and development trend of tungsten smelting slag[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 119-124. | |
28 | 戴艳阳. 钨渣中有价金属综合回收新清洁工艺研究[D]. 长沙: 中南大学, 2013. |
DAI Yanyang. Study on the new cleaner process of comprehensive recovery of valuble metals from tungsten residues[D]. Changsha: Central South University, 2013. | |
29 | 杨俊彦, 齐申, 刘海, 等. 钨冶炼渣综合回收利用的研究进展[J]. 工程科学学报, 2018, 40(12): 1468-1475. |
YANG Junyan, QI Shen, LIU Hai, et al. Progress of research related to the comprehensive recovery and utilization of tungsten smelting slag[J]. Chinese Journal of Engineering, 2018, 40(12): 1468-1475. | |
30 | 王钦建. 黑钨渣的酸分解与萃取工艺优化研究[J]. 环境保护与循环经济, 2009, 29(11): 37-39. |
WANG Qinjian. Study on carbon decomposition and extraction process optimization of black tungsten residue[J]. Environmental Protection and Circular Economy, 2009, 29(11): 37-39. | |
31 | 肖超, 刘景槐, 吴海国. 低品位钨渣处理工艺试验研究[J]. 湖南有色金属, 2012, 28(4): 24-26, 71. |
XIAO Chao, LIU Jinghuai, WU Haiguo. Experimental study on the treatment process of low grade tungsten slag[J]. Hunan Nonferrous Metals, 2012, 28(4): 24-26, 71. | |
32 | 苏正夫, 刘宇晖. 钨渣中钨回收利用新工艺研究[J]. 稀有金属与硬质合金, 2014, 42(4): 11-13. |
SU Zhengfu, LIU Yuhui. Study on a new process of tungsten recovery from tungsten slag[J]. Rare Metals and Cemented Carbides, 2014, 42(4): 11-13. | |
33 | 杨少华, 王君, 谢宝如, 等. 低品位钨渣处理工艺[J]. 有色金属科学与工程, 2015, 6(6): 29-32. |
YANG Shaohua, WANG Jun, XIE Baoru, et al. Treatment process of low-grade tungsten slag[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 29-32. | |
34 | 杨利群. 苏打烧结法处理低品位钨矿及废钨渣的研究[J]. 中国钼业, 2008, 32(4): 25-27. |
YANG Liqun. Study of processing low-grade tungsten mineral and waste residue of tungsten by soda sintering[J]. China Molybdenum Industry, 2008, 32(4): 25-27. | |
35 | TALAN Deniz, HUANG Qingqing. A review of environmental aspect of rare earth element extraction processes and solution purification techniques[J]. Minerals Engineering, 2022, 179: 107430. |
36 | ZHANG Wenjie, FENG Dongxia, XIE Xian, et al. Solvent extraction and separation of light rare earths from chloride media using HDEHP-P350 system[J]. Journal of Rare Earths, 2022, 40(2): 328-337. |
37 | CHEN Ziying, LI Zhan, CHEN Jia, et al. Recent advances in selective separation technologies of rare earth elements: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107104. |
38 | 龚丹丹, 李祖怡, 张勇, 等. 钨渣回收利用技术研究现状[J]. 稀有金属与硬质合金, 2021, 49(6): 1-8, 14. |
GONG Dandan, LI Zuyi, ZHANG Yong, et al. Research status of tungsten slag recycling technology[J]. Rare Metals and Cemented Carbides, 2021, 49(6): 1-8, 14. | |
39 | YUKSEKDAG Ayse, Borte KOSE-MUTLU, SIDDIQUI Azmat Fatima, et al. A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework- A review[J]. Chemosphere, 2022, 293: 133620. |
40 | 丁冲, 王晓辉, 何超然, 等. 黑钨渣硫酸浸钪及浸出过程中草黄铁矾法抑制铁浸出[J]. 过程工程学报, 2014, 14(6): 907-914. |
DING Chong, WANG Xiaohui, HE Chaoran, et al. Sulfuric acid leaching of scandium from black tungsten ore slag and depression leaching of iron by carphosiderite method[J]. The Chinese Journal of Process Engineering, 2014, 14(6): 907-914. | |
41 | 梁焕龙, 罗东明, 刘晨, 等. 从钨渣中浸出氧化钪的试验研究[J]. 湿法冶金, 2015, 34(2): 114-116. |
LIANG Huanlong, LUO Dongming, LIU Chen, et al. Leaching of scandium oxide from tungsten slag[J]. Hydrometallurgy of China, 2015, 34(2): 114-116. | |
42 | ASRAMI Mahdieh Razi, TRAN Nam Nghiep, NIGAM Krishna Deo Prasad, et al. Solvent extraction of metals: role of ionic liquids and microfluidics[J]. Separation and Purification Technology, 2021, 262: 118289. |
43 | CHEN Qianlin, MA Xin, ZHANG Xin, et al. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium[J]. Journal of Rare Earths, 2018, 36(11): 1190-1197. |
44 | NIE Huaping, WANG Yabing, WANG Yanliang, et al. Recovery of scandium from leaching solutions of tungsten residue using solvent extraction with Cyanex 572[J]. Hydrometallurgy, 2018, 175: 117-123. |
45 | ZHONG Xueming, FU Maosheng, QIN Yuancheng. Study on the decomposition of the tungsten residue using concentrated hydrochloric acid by reflux method[J]. Advanced Materials Research, 2014, 1033/1034: 395-398. |
46 | ZHANG Guifang, YAN Peng, YANG Qingrong. Experimental study on extraction of scandium from hydrochloride acid leaching liquid in TBP[J]. Advanced Materials Research, 2013, 807/808/809: 2440-2443. |
47 | 刘彩云, 符剑刚. 钨渣中钪的萃取回收实验研究[J]. 稀有金属与硬质合金, 2015, 43(5): 4-8, 11. |
LIU Caiyun, FU Jiangang. Experimental study on extraction and recovery of scandium from tungsten residue[J]. Rare Metals and Cemented Carbides, 2015, 43(5): 4-8, 11. | |
48 | 杨革. 从钨渣中提取高纯氧化钪[J]. 湖南有色金属, 2001, 17(1): 18-20. |
YANG Ge. Extraction of high-purity scandium oxide from tungsten slag[J]. Hunan Nonferrous Metals, 2001, 17(1): 18-20. | |
49 | ZOU Dan, DENG Yuefeng, CHEN Ji, et al. A review on solvent extraction of scandium[J]. Journal of Rare Earths, 2022, 40(10): 10. |
50 | YATSENKO S P, PYAGAI I N. Red mud pulp carbonization with scandium extraction during alumina production[J]. Theoretical Foundations of Chemical Engineering, 2010, 44(4): 563-568. |
51 | 张月英, 余守慧, 常增有, 等. 液膜技术提取钪的研究[J]. 上海金属(有色分册), 1990, 11(2): 9. |
ZHANG Yueying, YU Shouhui, CHANG Zengyou, et al. Study on extraction of scandium by liquid membrane process[J]. Shanghai Metals (Nonferrous Fascicule), 1990, 11(2): 9. | |
52 | WANG Weiwei, PRANOLO Yoko, CHENG Chu yong. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 2011, 108(1/2): 100-108. |
53 | ZHOU Jie, NING Shunyan, MENG Jiejie, et al. Purification of scandium from concentrate generated from titanium pigments production waste[J]. Journal of Rare Earths, 2021, 39(2): 194-200. |
54 | 刘健聪, 熊道陵, 张建平, 等. 钨冶炼渣中铁、锰浸出工艺研究[J]. 有色金属科学与工程, 2018, 9(4): 14-20. |
LIU Jiancong, XIONG Daoling, ZHANG Jianping, et al. The leaching process of iron and manganese in tungsten smelting slag[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 14-20. | |
55 | 戴艳阳, 钟晖, 钟海云. 钨渣回收制备四氧化三锰新工艺[J]. 中国有色金属学报, 2012, 22(4): 1242-1247. |
DAI Yanyang, ZHONG Hui, ZHONG Haiyun. Novel process for preparation of mangano-manganic oxide from tungsten residue[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(4): 1242-1247. | |
56 | 张建平. 钨冶炼渣制备电池级硫酸锰的工艺研究[D]. 赣州: 江西理工大学, 2018. |
ZHANG Jianping. Resrearch on the extraction, preparation and technology of battery-grade manganese sulfate from tungsten smelting slag[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. | |
57 | 谭晓恒. 黑钨渣磁化焙烧回收铁锰的技术研究[D]. 赣州: 江西理工大学, 2020. |
TAN Xiaoheng. Study on recovery of iron and manganese from black tungsten residue by magnetization roasting[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. | |
58 | LI Fangqin, WANG Peng, CHEN Wei, et al. Exploring recycling potential of rare, scarce, and scattered metals: present status and future directions[J]. Sustainable Production and Consumption, 2022, 30: 988-1000. |
59 | MIRJI K V, SHEELA, SAIBABA N. Technological challenges in extractive metallurgy and refining of Nb, Ta and preparation of their compounds & alloys[J]. Materials Today: Proceedings, 2016, 3(9): 3151-3161. |
60 | 杨秀丽, 王晓辉, 向仕彪, 等. 盐酸法富集钨渣中的钽和铌[J]. 中国有色金属学报, 2013, 23(3): 873-881. |
YANG Xiuli, WANG Xiaohui, XIANG Shibiao, et al. Enrichment of tantalum and niobium from tungsten residue by hydrochloric acid method[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 873-881. | |
61 | 汪加军, 王晓辉, 黄波, 等. 废钨渣中钽、铌、钨高效共提新工艺研究[J]. 有色金属科学与工程, 2013, 4(5): 91-96. |
WANG Jiajun, WANG Xiaohui, HUANG Bo, et al. New process of high efficient co-extraction of tantalum, niobium and tungsten from tungsten residue[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 91-96. | |
62 | 向仕彪, 黄波, 王晓辉, 等. 从废钨渣中酸法回收钽铌的研究[J]. 有色冶金设计与研究, 2012, 33(2): 5-7, 11. |
XIANG Shibiao, HUANG Bo, WANG Xiaohui, et al. Research on recovery of tantalum and niobium from tungsten residue by acid method[J]. Nonferrous Metals Engineering & Research, 2012, 33(2): 5-7, 11. | |
63 | 戴艳阳, 钟海云, 李荐, 等. 钨渣中有价金属综合回收工艺[J]. 中南工业大学学报(自然科学版), 2003, 34(1): 36-39. |
DAI Yanyang, ZHONG Haiyun, LI Jian, et al. Valuable metals' recovery from tungsten residue[J]. Journal of Central South University of Technology (Natural Science), 2003, 34(1): 36-39. | |
64 | DEBLONDE Gauthier J P, WEIGEL Valérie, BELLIER Quentin, et al. Selective recovery of niobium and tantalum from low-grade concentrates using a simple and fluoride-free process[J]. Separation and Purification Technology, 2016, 162: 180-187. |
65 | NETE M, PURCELL W, NEL J T. Non-fluoride dissolution of tantalum and niobium oxides and their separation using ion exchange[J]. Hydrometallurgy, 2017, 173: 192-198. |
66 | KABANGU M J, CROUSE P L. Separation of niobium and tantalum from Mozambican tantalite by ammonium bifluoride digestion and octanol solvent extraction[J]. Hydrometallurgy, 2012, 129/130: 151-155. |
67 | 靖青秀, 王云燕, 柴立元, 等. 硅藻土-钨渣基多孔陶粒对离子型稀土矿区土壤氨氮淋滤液的吸附[J]. 中国有色金属学报, 2018, 28(5): 1033-1042. |
JING Qingxiu, WANG Yunyan, CHAI Liyuan, et al. Adsorption behavior of ammonium in leachate from ionic rare earth mining area soil by diatomite and tungsten residue based porous ceramsite[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(5): 1033-1042. | |
68 | 包欢, 包惠明, 寿凯, 等. 掺钨矿渣砂浆的半柔性路面水稳性能研究[J]. 武汉理工大学学报, 2021, 43(9): 6-12. |
BAO Huan, BAO Huiming, SHOU Kai, et al. Study on water stability of semi flexible pavement mixed with tungsten slag mortar[J]. Journal of Wuhan University of Technology, 2021, 43(9): 6-12. | |
69 | 郭欢. 硅藻土—钨渣基多孔陶粒的制备与性能研究[D]. 赣州: 江西理工大学, 2017. |
GUO Huan. Study on preparation and properties of diatomite and tungsten slag based polypore ceramics[D]. Ganzhou: Jiangxi University of Science and Technology, 2017. | |
70 | 胡晖, 蔡岳洪. 钨渣在耐磨球生产中的应用研究[J]. 现代铸铁, 2003, 23(6): 1-4. |
HU Hui, CAI Yuehong. A study on application of tungstenic slag in production of wear resistant grinding balls[J]. Modern Cast Iron, 2003, 23(6): 1-4. | |
71 | 王承遇, 郝彦武, 陶瑛. 晶核剂含量对钨渣微晶玻璃性能的影响[J]. 玻璃, 1994, 21(5): 1-5, 20. |
WANG Chengyu, HAO Yanwu, TAO Ying. The influence of amourit of nucleating agent on properties of wolfram tailing glass-cerami[J]. Glass, 1994, 21(5): 1-5, 20. | |
72 | 夏文堂. 钨的二次资源及其开发前景[J]. 再生资源研究, 2006(1): 11-17. |
XIA Wentang. Secondary resources of tungsten and its development prospect[J]. Recyclable Resources and Circular Economy, 2006(1): 11-17. | |
73 | 靖青秀, 郭欢, 王魏. 硅藻土掺杂钨渣制备多孔陶粒及其性能研究[J]. 中国陶瓷, 2017, 53(4): 52-56. |
JING Qingxiu, GUO Huan, WANG Wei. Preparation and performance of porous ceramic from diatomite with waste tungsten residue[J]. China Ceramics, 2017, 53(4): 52-56. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[3] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[4] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[5] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[6] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[7] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[8] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[9] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[10] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[11] | LI Weihua, WU Yinkai, SUN Yingjie, YIN Junquan, XIN Mingxue, ZHAO Youjie. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677. |
[12] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[13] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[14] | CHANG Zhankun, ZHANG Chi, SU Bingqin, ZHANG Congzheng, WANG Jian, QUAN Xiaohui. Effect of H2S gaseous substrate on sludge bioleaching treatment efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2733-2743. |
[15] | HU Yafei, FENG Ziping, TIAN Jiayao, HUANG Chong, SONG Wenji. Energy saving simulation and operation economic analysis of fuel driven non-electric heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1217-1227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |