1 |
SHAO Y Y, YIN G P, WANG Z B, et al. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges[J]. Journal of Power Sources, 2007, 167(2): 235-242.
|
2 |
ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344.
|
3 |
CLEEMANN L N, BUAZAR F, LI Q, et al. Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes[J]. Fuel Cells, 2013: 822-831.
|
4 |
JHENG L C, CHANG W J Y, HSU S L C, et al. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 323: 57-66.
|
5 |
LIU F, KVESIĆ M, WIPPERMANN K, et al. Effect of spiral flow field design on performance and durability of HT-PEFCs[J]. Journal of the Electrochemical Society, 2013, 160(8): F892-F897.
|
6 |
SØNDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of PBI-based HT-PEM fuel cells: effect of operating parameters[J]. Journal of the Electrochemical Society, 2018, 165(6): F3053-F3062.
|
7 |
SCHMIDT T J, BAURMEISTER J. Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode[J]. Journal of Power Sources, 2008, 176(2): 428-434.
|
8 |
OONO Y, FUKUDA T, SOUNAI A, et al. Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1007-1014.
|
9 |
ZHANG J J, BAI H J, YAN W R, et al. Enhancing cell performance and durability of high temperature polymer electrolyte membrane fuel cells by inhibiting the formation of cracks in catalyst layers[J]. Journal of the Electrochemical Society, 2020, 167(11): 114501.
|
10 |
ZHANG Weiqi, YAO Dongmei, TIAN Liliang, et al. Enhanced performance of high temperature polymer electrolyte membrane fuel cell using a novel dual catalyst layer structured cathode[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125: 285-290.
|
11 |
ZHANG Caizhi, ZHOU Weijiang, EHTESHAMI M M, et al. Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation[J]. Energy Conversion and Management, 2015, 105: 433-441.
|
12 |
BATET D, ZOHRA F T, KRISTENSEN S B, et al. Continuous durability study of a high temperature polymer electrolyte membrane fuel cell stack[J]. Applied Energy, 2020, 277: 115588.
|
13 |
KIM M, LIM J W, LEE D G. Surface modification of carbon fiber phenolic bipolar plate for the HT-PEMFC with nano-carbon black and carbon felts[J]. Composite Structures, 2015, 119: 630-637.
|
14 |
TACCANI R, ZULIANI N. Effect of flow field design on performances of high temperature PEM fuel cells: experimental analysis[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10282-10287.
|
15 |
THOMAS S, VANG J R, ARAYA S S, et al. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions[J]. Applied Energy, 2017, 192: 422-436.
|
16 |
LI Jingjing, YANG Linlin, WANG Ziqian, et al. Degradation study of high temperature proton exchange membrane fuel cell under start/stop and load cycling conditions[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24353-24365.
|
17 |
SCOTT K, PILDITCH S, MAMLOUK M. Modelling and experimental validation of a high temperature polymer electrolyte fuel cell[J]. Journal of Applied Electrochemistry, 2007, 37(11): 1245-1259.
|
18 |
KIM M, KANG T, KIM J, et al. One-dimensional modeling and analysis for performance degradation of high temperature proton exchange membrane fuel cell using PA doped PBI membrane[J]. Solid State Ionics, 2014, 262: 319-323.
|
19 |
YU S, XIAO L, BENICEWICZ B C. Durability studies of PBI-based high temperature PEMFCs[J]. Fuel Cells, 2008, 8(3/4): 165-174.
|
20 |
OONO Y, SOUNAI A, HORI M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373.
|
21 |
MOÇOTÉGUY P, LUDWIG B, SCHOLTA J, et al. Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI celtec-P based membrane electrode assemblies for micro-CHP applications[J]. Fuel Cells, 2010, 10(2): 299-311.
|
22 |
KIM J R, YI J S, SONG T W. Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2012, 220: 54-64.
|
23 |
PINAR F J, CAÑIZARES P, RODRIGO M A, et al. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes[J]. Journal of Power Sources, 2015, 274: 177-185.
|
24 |
CHRISTOPH H, Schmidt THOMAS J.. On a new degradation mode for high-temperature polymer electrolyte fuel cells: how bipolar plate degradation affects cell performance[J]. Electrochimica Acta, 2011, 56: 4237-4242.
|
25 |
TANG Hongying, GENG Kang, WU Lei, et al. Fuel cells with an operational range of -20℃ to 200℃ enabled by phosphoric acid-doped intrinsically ultramicroporous membranes[J]. Nature Energy, 2022, 7(2): 153-162.
|
26 |
LIN Hsiu-Li, WU Tung-Ju, LIN Yu-Tsun, et al. Effect of polyvinylidene difluoride in the catalyst layer on high-temperature PEMFCs[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9400-9409.
|
27 |
EREN E O, ÖZKAN N, DEVRIM Y. Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts[J]. International Journal of Hydrogen Energy, 2021, 46(57): 29556-29567.
|
28 |
GURAU V, DE CASTRO E. Prediction of performance variation caused by manufacturing tolerances and defects in gas diffusion electrodes of phosphoric acid (PA)-doped polybenzimidazole (PBI)-based high-temperature proton exchange membrane fuel cells[J]. Energies, 2020, 13(6): 1345.
|
29 |
ZHANG Shuomeng, ZHANG Jujia, ZHU Zejie, et al. Unusual influence of binder composition and phosphoric acid leaching on oxygen mass transport in catalyst layers of high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020, 473: 228616.
|
30 |
WANG Lixia, LI Lei, LIU Haoyuan, et al. Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2018, 399: 343-349.
|
31 |
ECHAVARRÍA A M, RICO P, GÓMEZ RIBELLES J L, et al. Development of a Ta/TaN/TaN x (Ag) y /TaN nanocomposite coating system and bio-response study for biomedical applications[J]. Vacuum, 2017, 145: 55-67.
|