1 |
徐春华. 大型甲醇合成工艺技术研究进展[J]. 化学工程与装备, 2019(5): 230-232.
|
|
XU C H. Research progress of large-scale methanol synthesis technology[J]. Chemical Engineering & Equipment, 2019(5): 230-232.
|
2 |
华经产业研究院[EB/OL]. .
|
|
Huajing Industry Research Institute [EB/OL]. .
|
3 |
李卓君. 低温甲醇合成研究进展[J]. 山西化工, 2018, 38(4): 33-34, 47.
|
|
LI Zhuojun. Research progress of methanol synthesis at low temperature[J]. Shanxi Chemical Industry, 2018, 38(4): 33-34, 47.
|
4 |
CHEN Zhuo, SHEN Qun, SUN Nannan, et al. Life cycle assessment of typical methanol production routes: the environmental impacts analysis and power optimization[J]. Journal of Cleaner Production, 2019, 220: 408-416.
|
5 |
CHEN P C, CHIU H M, CHYOU Y P, et al. Processes simulation study of coal to methanol based on gasification technology [R]. World Academy of Science, Engineering and Technology, 2010.
|
6 |
Minh Tri LUU, MILANI Dia, BAHADORI Alireza, et al. A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies[J]. Journal of CO2 Utilization, 2015, 12: 62-76.
|
7 |
XIANG Dong, QIAN Yu, MAN Yi, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process[J]. Applied Energy, 2014, 113: 639-647.
|
8 |
XU Xiaoying, LIU Yuan, ZHANG Fan, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68.
|
9 |
CORMOS Calin Cristian. Techno-economic evaluations of copper-based chemical looping air separation system for oxy-combustion and gasification power plants with carbon capture[J]. Energies, 2018, 11(11): 3095.
|
10 |
LI S. The mechanism of minimal energy penalty for CO2 capture and the study on coal-based polygeneration system for cogenerating substitute natural gas and power [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2012.
|
11 |
柳康, 许世森, 李广宇, 等. 基于整体煤气化联合循环的燃烧前CO2捕集工艺及系统分析[J]. 化工进展, 2018, 37(12): 4897-4907.
|
|
LIU Kang, XU Shisen, LI Guangyu, et al. Technological process and system analyst of pre-combustion CO2 capture based on IGCC[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907.
|
12 |
XIE Xiaomin, ZHANG Tingting, GU Jiachun, et al. Water footprint assessment of coal-based fuels in China: Exploring the impact of coal-based fuels development on water resources[J]. Journal of Cleaner Production, 2018, 196: 604-614.
|
13 |
ZHOU Cheng, SHAH Kalpit, SONG Hui, et al. Integration options and economic analysis of an integrated chemical looping air separation process for oxy-fuel combustion[J]. Energy & Fuels, 2016, 30(3): 1741-1755.
|
14 |
NANDY Anirban, LOHA Chanchal, GU Sai, et al. Present status and overview of Chemical Looping Combustion technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 597-619.
|
15 |
郑浩, 孙朝, 曾亮. 化学链技术在低碳制氢领域的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 313-329.
|
|
ZHENG Hao, SUN Zhao, ZENG Liang. Research progress of chemical looping technology for low-carbon hydrogen generation[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 313-329.
|
16 |
王涵, 李世安, 杨发财, 等. 氢气制取技术应用现状及发展趋势分析[J]. 现代化工, 2021, 41(2): 23-27.
|
|
WANG Han, LI Shian, YANG Facai, et al. Application status and development trend analysis of hydrogen production technologies[J]. Modern Chemical Industry, 2021, 41(2): 23-27.
|
17 |
TONG Andrew, BAYHAM Samuel, KATHE Mandar V, et al. Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University[J]. Applied Energy, 2014, 113: 1836-1845.
|
18 |
QIN Shiyue, CHANG Shiyan, YAO Qiang. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432.
|
19 |
郭庆华, 王亦飞, 陈雪莉, 等. 多喷嘴对置式水煤浆气化技术进展及工程应用[J]. 氮肥与合成气, 2019, 47(1): 6-11, 16.
|
|
GUO Q H, WANG Y F, CHEN X L, et al. Progress and Engineering application of multi-nozzle opposed coal water slurry gasification technology[J]. Nitrogen Fertilizer and Syngas, 2019, 47(1): 6-11, 16.
|
20 |
汪寿建. 现代煤气化技术发展趋势及应用综述[J]. 化工进展, 2016, 35(3): 653-664.
|
|
WANG Shoujian. Development and application of modern coal gasification technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 653-664.
|
21 |
MARTELLI Emanuele, KREUTZ Thomas, CARBO Michiel, et al. Shell coal IGCCS with carbon capture: conventional gas quench vs. innovative configurations[J]. Applied Energy, 2011, 88(11): 3978-3989.
|
22 |
Po Chih KUO, WU Wei. Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal[J]. Chemical Engineering Science, 2016, 142: 201-214.
|
23 |
诸林, 邓亚欣, 陈虎, 等. 基于化学链制氧的生物质气化产氢工艺[J]. 过程工程学报, 2017, 17(2): 306-312.
|
|
ZHU Lin, DENG Yaxin, CHEN Hu, et al. Integrated biomass gasification with chemical looping air separation for hydrogen production[J]. The Chinese Journal of Process Engineering, 2017, 17(2): 306-312.
|
24 |
史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946.
|
|
SHI Xiaofei, YANG Siyu, QIAN Yu. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946.
|
25 |
罗明, 王树众, 王龙飞, 等. 基于化学链技术制氢的研究进展[J]. 化工进展, 2014, 33(5): 1123-1133.
|
|
LUO Ming, WANG Shuzhong, WANG Longfei, et al. Advances in hydrogen production using chemical-looping technology[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1123-1133.
|
26 |
黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869.
|
|
HUANG Hong, YANG Siyu. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869.
|
27 |
K M Vanden BUSSCHE, FROMENT G F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst[J]. Journal of Catalysis, 1996, 161(1): 1-10.
|
28 |
YANG Qingchun, ZHU Shun, YANG Qing, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814.
|
29 |
LI Sheng, JIN Hongguang, GAO Lin, et al. Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture[J]. Applied Energy, 2014, 130: 552-561.
|
30 |
VASUDEVAN Suraj, FAROOQ Shamsuzzaman, KARIMI Iftekhar A, et al. Energy penalty estimates for CO2 capture: comparison between fuel types and capture-combustion modes[J]. Energy, 2016, 103: 709-714.
|