Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 391-399.DOI: 10.16085/j.issn.1000-6613.2021-0207
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Lihong1,2,3(), LI Jie1,3, WANG Ya’e1(), XIE Huina1, ZHAO Wei1, LI Jing1
Received:
2021-01-28
Revised:
2021-05-20
Online:
2022-01-24
Published:
2022-01-05
Contact:
WANG Ya’e
张莉红1,2,3(), 李杰1,3, 王亚娥1(), 谢慧娜1, 赵炜1, 李婧1
通讯作者:
王亚娥
作者简介:
张莉红(1988—),女,博士研究生,研究方向为污水处理。E-mail:基金资助:
CLC Number:
ZHANG Lihong, LI Jie, WANG Ya’e, XIE Huina, ZHAO Wei, LI Jing. Feammox: a novel autotrophic nitrogen removal technology[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 391-399.
张莉红, 李杰, 王亚娥, 谢慧娜, 赵炜, 李婧. Feammox: 一种新型自养生物脱氮技术[J]. 化工进展, 2022, 41(1): 391-399.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0207
环境 | Feammox活性 | 氮损失以及贡献 | 主要微生物 | 文献 |
---|---|---|---|---|
厌氧废水处理反应器 | 氨氮去除率69.49% | 0.81%~2.2% | 地杆菌属 | [ |
厌氧消化反应器 | 11.3%~21.5% | [ | ||
太湖河口生态环境 | 0.07~0.15mg·kg-1·d-1 | 8.3~17.8kg·hm-2·a-1,3.5%~4.2% | 地杆菌属,厌氧黏细菌,假单胞菌 | [ |
长江口湿地 | 0.24~0.36mg·kg-1·d-1 | 8.3~17.8t·km-1·a-1,3.1%~4.9% | 地杆菌属,希瓦菌属 | [ |
水稻土 | 0.17~0.59mg·kg-1·d-1 | 7.8~61kg·hm-2·a-1,0.577%~6.89% | 地杆菌属 | [27,22] |
麦稻轮作区 | 0.031~0.42mg·kg-1·d-1 | 36.00% | 地杆菌属,厌氧黏细菌 | [ |
河岸带 | 0.32~0.37mg·kg-1·d-1 | 23.7~43.9kg·hm-2·a-1 | 厌氧黏细菌,假单胞菌,地杆菌属 | [ |
人工湿地 | 11.0%~25.0% | 酸微菌属A6 | [ | |
湖泊沉积物 | 0.23~0.43mg·kg-1·d-1,0.14~0.34mg·kg-1·d-1 | 5.0%~9.2% | 地杆菌属,希瓦菌属 | [ |
热带旱地土壤 | 0.32mg·kg-1·d-1 | [ |
环境 | Feammox活性 | 氮损失以及贡献 | 主要微生物 | 文献 |
---|---|---|---|---|
厌氧废水处理反应器 | 氨氮去除率69.49% | 0.81%~2.2% | 地杆菌属 | [ |
厌氧消化反应器 | 11.3%~21.5% | [ | ||
太湖河口生态环境 | 0.07~0.15mg·kg-1·d-1 | 8.3~17.8kg·hm-2·a-1,3.5%~4.2% | 地杆菌属,厌氧黏细菌,假单胞菌 | [ |
长江口湿地 | 0.24~0.36mg·kg-1·d-1 | 8.3~17.8t·km-1·a-1,3.1%~4.9% | 地杆菌属,希瓦菌属 | [ |
水稻土 | 0.17~0.59mg·kg-1·d-1 | 7.8~61kg·hm-2·a-1,0.577%~6.89% | 地杆菌属 | [27,22] |
麦稻轮作区 | 0.031~0.42mg·kg-1·d-1 | 36.00% | 地杆菌属,厌氧黏细菌 | [ |
河岸带 | 0.32~0.37mg·kg-1·d-1 | 23.7~43.9kg·hm-2·a-1 | 厌氧黏细菌,假单胞菌,地杆菌属 | [ |
人工湿地 | 11.0%~25.0% | 酸微菌属A6 | [ | |
湖泊沉积物 | 0.23~0.43mg·kg-1·d-1,0.14~0.34mg·kg-1·d-1 | 5.0%~9.2% | 地杆菌属,希瓦菌属 | [ |
热带旱地土壤 | 0.32mg·kg-1·d-1 | [ |
9 | LOU H W, LEI X, CHEN Y C. Research progress in biological nitrogen removal[J]. Industrial Water Treatment, 2019, 39(5): 1-4. |
10 | MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via Anammox: recent advances[J]. Bioresource Technology, 2016, 200: 981-990. |
11 | NISHIMURA F, HIDAKA T, NAKAGAWA A, et al. Removal of high concentration ammonia from wastewater by a combination of partial nitrification and Anammox treatment[J]. Environmental Technology, 2012, 33(13/14/15): 1485-1489. |
12 | LI X, YAN Y, HUANG Y, et al. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631(1): 153-157. |
13 | 王新奇, 程爱华.生物海绵铁去除生活污水中氨氮的性能研究[J]. 科学技术与工程, 2014, 14(9): 284-287. |
WANG X Q, CHENG A H. Study on performance of biological sponge iron in nitrogen removal from domestic wastewater[J]. Science Technology and Engineering, 2014, 14(9): 284-287. | |
14 | 杨含, 郑丹, 邓良伟, 等.微生物驱动下铁氧化还原循环与生物脱氮[J]. 中国沼气, 2019(4): 77-86. |
YANG H, ZHENG D, DENG L W, et al. Iron recycle and biological nitrogen removal driven by microorganisms[J]. China Biogas, 2019 (4): 77-86. | |
15 | YANG Y F, XIAO C C, LU J H, et al. Fe(Ⅲ)/Fe(Ⅱ) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor[J]. Water Research, 2020, 172: 115528. |
16 | 吴德礼, 傅旻瑜, 马鲁铭. 生物及化学反硝化过程中N2O的产生与控制[J]. 化学进展, 2012, 24(10): 2054-2061. |
WU D L, FU M Y, MA L M. Nitrous oxide emission and control in biological and chemical denitrification[J]. Progress in Chemistry, 2012, 24 (10): 2054-2061. | |
17 | DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu Estuary region[J]. Science of the Total Environment, 2019, 662: 600-606. |
18 | LI X F, HOU L J, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49(19): 11560-11568. |
1 | GALÍ A, DOSTA J, LOOSDRECHT M C M VAN, et al. Biological nitrogen removal via nitrite of reject water with a SBR and chemostat SHARON/denitrification process[J]. Industrial & Engineering Chemistry Research, 2006, 45(22): 7656-7660. |
2 | Ni B J, RUSCALLEDA M, PELLICERNACHER C, et al. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: a simple extension to the general ASM descriptive models[J]. JAIDS: Journal of Acquired Immune Deficiency Syndromes, 2011, 6(6): 706-706. |
19 | CLEMÉNT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328. |
20 | YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. |
21 | YAO Z B, WANG F, WANG C L, et al. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research International, 2019, 26(15): 15084-15094. |
22 | YI B, WANG H H, ZHANG Q C, et al. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China[J]. Science of the Total Environment, 2019, 652: 1139-1147. |
23 | 李祥, 林兴, 杨朋兵, 等. 活性污泥厌氧Fe(Ⅲ)还原氨氧化现象初探[J]. 环境科学, 2016, 37(8): 3114-3119. |
LI X, LIN X, YANG P B, et al. Simultaneous ferric reduction with ammonia oxidation phenomena in activated sludge in anaerobic environment[J]. Environmental Science, 2016, 37(8): 3114-3119. | |
24 | SAWAYAMA S. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72. |
25 | YANG Y F, JIN Z, QUAN X, et al. Transformation of nitrogen and iron species during nitrogen removal from wastewater via Feammox by adding ferrihydrite[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14394-14402. |
26 | YANG Y F, ZHANG Y B, LI Y, et al.Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(Ⅲ) compounds[J]. Chemical Engineering Journal, 2018, 332: 711-716. |
27 | DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647. |
28 | QIN Y B, DING B J, LI Z K, et al. Variation of Feammox following ammonium fertilizer migration in a wheat-rice rotation area, Taihu Lake, China[J]. Environmental Pollution, 2019, 252: 119-127. |
29 | DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231(1): 379-386. |
30 | SHUAI W T, JAFFE P R. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 2019, 648: 984-992. |
31 | YAO Z B, YANG L, SONG N, et al. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake[J]. Environmental Science and Pollution Research International, 2020, 27(21): 25899-25907. |
32 | LI X, HUANG Y, LIU H W, et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64(2): 42-50. |
33 | WANG X, SHU D T, YUE H. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe(Ⅲ) supplementation[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10147-10163. |
34 | HUANG S, JAFFÉ P R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. PLoS One, 2018, 13(4): e0194007. |
35 | YANG Y F, PENG H, NIU J F, et al. Promoting nitrogen removal during Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation (Feammox) by adding anthraquinone-2,6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247: 973-979. |
36 | YAMAMURA S, SUDO T, WATANABE M, et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342: 571-578. |
37 | YIN S Y, LI J, DONG H Y, et al. Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(Ⅲ) addition: nitrogen shock loading and community structure[J]. Bioresource Technology, 2019, 287: 121405-121411. |
38 | 吴彦成, 顾鑫, 朱继涛, 等. 铁氨氧化污水生物脱氮技术的研究进展[J]. 中国给水排水, 2020, 36(18): 38-44. |
WU Y C, GU X, ZHU J T, et al. Research advances of biological nitrogen removal from wastewater via Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidatiion (Feammox) process[J]. China Water & Wastewater, 2020, 36 (18): 38-44. | |
39 | HUANG S, JAFFÉ P R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12(3): 769-779. |
40 | ZHOU G W, YANG X R, LI H, et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction[J]. Environmental Science & Technology, 2016, 50(17): 9298-9307. |
41 | 陈方敏, 金润, 袁砚, 等. 温度和pH值对铁盐型氨氧化过程氮素转化的影响[J]. 环境科学, 2018, 39(9): 4289-4293. |
CHEN F M, JIN R, YUAN Y, et al. Effect of temperature and pH on nitrogen conversion in Feammox process[J]. Environmental Science, 2018, 39(9): 4289-4293. | |
42 | 刘恒蔚, 毕玮, 李祥, 等. 厌氧氨氧化与铁氨氧化反应器功能微生物对比研究[J]. 环境科学与技术, 2020, 43(6): 39-45. |
LIU H W, BI W, LI X, et al. Comparative anslysis of functional bacteria communities in Feammox and Anammox reactors[J]. Environmental Science & Technology, 2020, 43(6): 39-45. | |
43 | WEBER K A, URRUTIA M M, CHURCHILL P F, et al. Anaerobic redox cycling of iron by freshwater sediment microorganisms[J]. Environmental Microbiology, 2006, 8(1): 100-113. |
44 | JIA R, LI L N, QU D, et al. Enhanced iron(Ⅲ) reduction following amendment of paddy soils with biochar and glucose modified biochar[J]. Environmental Science and Pollution Research, 2018, 25(1): 91-103. |
45 | 吴胤, 陈琛, 毛小云, 等. 基于Feammox的生物膜反应器性能研究[J]. 中国环境科学, 2017, 37(9): 3353-3362. |
WU Y, CHEN C, MAO X Y, et al. Study on performance of the Feammox biofilm-reactor[J]. China Environmental Science, 2017, 37(9): 3353-3362. | |
46 | ZHANG M, ZHENG P, WANG R, et al. Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology[J]. Chemosphere, 2014, 117: 604-609. |
47 | CARLSON H K, CLARK I C, BLAZEWICZ S J, et al. Fe(Ⅱ) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions.[J]. Journal of Bacteriology, 2013, 195(14): 3260-3268. |
48 | ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. |
49 | 王茹, 赵治国, 郑平, 等. 铁型反硝化: 一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(4): 2003-2010. |
WANG R, ZHAO Z G, ZHENG P, et al. Iron-dependent denitrification, a novel technology to remove nitrogen from wastewaters[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2003-2010. | |
50 | ZHOU J, WANG H Y, YANG K, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
51 | KANAPARTHI D, POMMERENKE B, CASPER P, et al. Chemolithotrophic nitrate-dependent Fe(Ⅱ)-oxidizing nature of actinobacterial subdivision lineage TM3[J]. The ISME Journal, 2013, 7(8): 1582-1594. |
52 | ZHOU S, BORJIGIN S, RIYA S, et al. The relationship between anammox and denitrification in the sediment of an inland river[J]. Science of the Total Environment, 2014, 490: 1029-1036. |
53 | LIU Y, FENG C P, SHENG Y Z, et al. Effect of Fe(Ⅱ) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(Ⅱ)-contaminated groundwater[J]. Ecotoxicology and Environmental Safety, 2018, 166: 437-445. |
54 | BI Z, ZHANG W J, SONG G, et al. Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: a novel prospective scheme for autotrophic nitrogen removal[J]. Science of the Total Environment, 2019, 692: 582-588. |
55 | DING B J, ZHANG H, LUO W Q, et al. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 2021, 773: 145601. |
56 | XIE F, MA X, ZHAO B W, et al. Promoting the nitrogen removal of anammox process by Fe-C micro-electrolysis[J]. Bioresource Technology, 2020, 297: 122429. |
57 | 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5): 2265-2272, 1935. |
WU Y X, ZENG W, LIU H, et al. Exploration of on nitrogen transformation pathway in Feammox system[J]. CIESC Journal, 2020, 71(5): 2265-2272, 1935. | |
3 | 张蔚萍, 陈建中.低碳高浓度含氮废水的生物脱氮技术[J].环境保护, 2003, 31(6): 20-21. |
ZHANG W P, CHEN J Z. Biological denitrification of low carbon and high nitrogen concentration wastewater [J].Environmental Protection, 2003, 31(6): 20-21. | |
4 | JETTEN M S, STROUS M, DE PAS-SCHOONEN K T VAN, et al., The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. |
5 | KUAI L, VERSTRAETE W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and Environmental Microbiology, 1998, 64(11): 4500-4506. |
6 | PYNAERT K, WYFFELS S, SPRENGERS R, et al. Oxygen-limited nitrogen removal in a lab-scale rotating biological contactor treating an ammonium-rich wastewater[J]. Water Science and Technology, 2002, 45(10): 357-363. |
7 | MOON J, HWANG Y, KIM J, et al. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur[J]. Water Science & Technology, 2016, 74(4): 805-815. |
8 | 陶美霞, 陈明, 胡兰文, 等. 生物技术在处理氨氮废水中的研究进展[J]. 现代化工, 2018, 38(12): 24-28. |
TAO M X, CHEN M, HU L W, et al. Research progress of new biotechnology in treatment of ammonia-containing wastewater [J]. Modern Chemical Industry, 2018, 38(12): 24-28. | |
9 | 娄宏伟, 雷鑫, 陈元彩. 生物脱氮的研究进展[J]. 工业水处理, 2019, 39(5): 1-4. |
[1] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[2] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[3] | CHEN Xiangyu, BIAN Chunlin, XIAO Benyi. Research progress on temperature phased anaerobic digestion technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4872-4881. |
[4] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[5] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[6] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[7] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[8] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[9] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[10] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[11] | ZHU Zixuan, CHEN Junjiang, ZHANG Xingxing, LI Xiang, LIU Wenru, WU Peng. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2091-2100. |
[12] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[13] | ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, CHEN Jiayi, LIU Chenyu, YAO Hong. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: a review [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617. |
[14] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[15] | WU Xinbo, DANG Hongzhong, MA Jiao, YAN Yuan, ZENG Tianxu, LI Weiwei, ZHANG Guozhen, CHEN Yongzhi. Effect of denitrifying phosphorus removal under short-cut nitrification mode with A2/O-BAF process [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1089-1097. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |