Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 343-349.DOI: 10.16085/j.issn.1000-6613.2021-0192
• Materials science and technology • Previous Articles Next Articles
Received:
2021-01-27
Revised:
2021-07-13
Online:
2022-01-24
Published:
2022-01-05
作者简介:
彭得群(1982—),男,博士,研究方向为锂离子电池负极材料。E-mail:基金资助:
CLC Number:
PENG Dequn. Synthesis and electrochemical properties of CuGeO3/Ni foam as binder-free anode for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 343-349.
彭得群. CuGeO3/泡沫镍负极材料的制备及其电化学性能[J]. 化工进展, 2022, 41(1): 343-349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0192
电极材料 | 电流密度/A·g-1 | 循环次数 | 可逆比容量/mA·h·g-1 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|
Zn2GeO4/石墨烯 | 0.3 | 600 | 702 | ― | [ |
Cd2Ge2O6/RGO | 0.1 | 100 | 730 | 75.3 | [ |
CoGCs/C-4 | 0.2 | 100 | 630.6 | 48.5 | [ |
PbGeO3/GNS | 0.1 | 50 | 607 | 53 | [ |
CuGeO3/rGO-30 | 0.1 | 200 | 909 | 93.2 | [ |
CuGeO3/NF | 0.2 | 500 | 972 | 94.1 | 本文工作 |
0.5 | 600 | 712 | 91.3 |
电极材料 | 电流密度/A·g-1 | 循环次数 | 可逆比容量/mA·h·g-1 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|
Zn2GeO4/石墨烯 | 0.3 | 600 | 702 | ― | [ |
Cd2Ge2O6/RGO | 0.1 | 100 | 730 | 75.3 | [ |
CoGCs/C-4 | 0.2 | 100 | 630.6 | 48.5 | [ |
PbGeO3/GNS | 0.1 | 50 | 607 | 53 | [ |
CuGeO3/rGO-30 | 0.1 | 200 | 909 | 93.2 | [ |
CuGeO3/NF | 0.2 | 500 | 972 | 94.1 | 本文工作 |
0.5 | 600 | 712 | 91.3 |
1 | XIA Tianlai, WANG Yingqian, Chengkang MAI, et al. Facile in situ growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries[J]. RSC Advances, 2019, 9(34): 19253-19260. |
2 | 王天星, 王贺权. 介孔纳米片构筑具有微纳分级结构的ZnCo2O4微米花及制备高比能锂离子电池[J]. 化工进展, 2018, 37(6): 2032-2038. |
WANG Tianxing, WANG Hequan. Synthesis of hierarchical ZnCo2O4 miroflowers assembled by mesoporous nanosheets and their applications in high specific energy lithium ion battery[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2032-2038. | |
3 | WANG Jun, WANG Jiazhao, SUN Ziqi, et al. A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(13): 4613-4618. |
4 | LI Weihan, YANG Zhenzhong, CHENG Jianxiu, et al. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries[J]. Nanoscale, 2014, 6(9): 4532-4537. |
5 | 郭丝霖, 康帅, 陆文强. 一步法制备锗/MXene复合材料及其作为锂离子电池负极的研究[J]. 无机材料学报, 2020, 35(1): 105-111. |
GUO Silin, KANG Shuai, LU Wenqiang. Ge nanoparticles in MXene sheets: one-step synthesis and highly improved electrochemical property in lithium-ion batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. | |
6 | CHEN Yifan, LIN Yangfan, DU Ning, et al. Synthesis of Zn2GeO4@C core-shell nanorods as high-reversible anode materials for lithium-ion batteries[J]. Energy Technology, 2017, 5(9): 1656-1662. |
7 | DING Caihua, ZHAO Yongjie, YAN Dong, et al. Construction of Zn2GeO4/graphene nanostructures with dually-protected functional nanoframes for enhanced lithium-storage performances[J]. Electrochimica Acta, 2017, 251: 129-136. |
8 | WANG Rui, WU Songping, Yichao LYU, et al. Partially crystalline Zn2GeO4 nanorod/graphene composites as anode materials for high performance lithium ion batteries[J]. Langmuir, 2014, 30(27): 8215-8220. |
9 | ZOU Feng, HU Xianluo, Long QIE, et al. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries[J]. Nanoscale, 2014, 6(2): 924-930. |
10 | HAN Jinzhi, QIN Jian, GUO Lichao, et al. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries[J]. Applied Surface Science, 2018, 427: 670-679. |
11 | JIN Shuaixing, WANG Chengxin. Synthesis and first investigation of excellent lithium storage performances of Fe2GeO4/reduced graphene oxide nanocomposite[J]. Nano Energy, 2014, 7: 63-71. |
12 | LIU Xusong, MA Xiaoxuan, WANG Jing, et al. The binder-free Ca2Ge7O16 nanosheet/carbon nanotube composite as a high-capacity anode for Li-ion batteries with long cycling life[J]. RSC Advances, 2016, 6(108): 107040-107048. |
13 | LIU Xusong, WANG Jing, LIU Xiaoxu, et al. Free-standing Ca2Ge7O16 nanorod arrays anode with long-term stability and superior rate capability in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 783: 15-21. |
14 | GE Rongyun, WU Songping, DU Yao, et al. Enhanced Li-storage performances of dually-protected CoGeO3 nanocomposites as anode materials for lithium ion batteries[J]. Carbon, 2016, 107: 352-360. |
15 | WANG Jun, FENG Chuanqi, SUN Ziqi, et al. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries[J]. Scientific Reports, 2014, 4: 7030. |
16 | FENG Jinkui, LAI Man On, LU Li. Lithium storage capability of CuGeO3 nanorods[J]. Materials Research Bulletin, 2012, 47(7): 1693-1696. |
17 | MENG Wenjie, ZHAO Min, YANG Huixian, et al. Synthesis of CuGeO3/reduced graphene oxide nanocomposite by hydrothermal reduction for high performance Li-ion battery anodes[J]. Ceramics International, 2020, 47(7):9249-9255. |
18 | LI Zhi, XU Zhanwei, TAN Xuehai, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science, 2013, 6(3): 871-878. |
19 | KIM C H, JUNG Y S, LEE K T, et al. The role of in situ generated nano-sized metal particles on the coulombic efficiency of MGeO3 (M = Cu, Fe, and Co) electrodes[J]. Electrochimica Acta, 2009, 54 (18): 4371-4377. |
20 | REN Jianguo, WU Qihui, TANG Hao, et al. Germanium-graphene composite anode for high-energy lithium batteries with long cycle life[J]. Journal of Materials Chemistry, 2013, 1(5): 1821-1826. |
21 | 裴立宅, 杨永, 杨连金, 等. 一维锗酸盐纳米材料的合成及应用[J]. 材料工程, 2014, 1: 90-96. |
PEI Lizhai, YANG Yong, YANG Lianjin, et al. Synthesis and application of one-dimensional germanate nanomaterial[J]. Journal of Material Engineering, 2014, 1: 90-96. | |
22 | YI Zheng, HAN Qigang, CHENG Yong, et al. A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries[J]. Electrochimica Acta, 2016, 190: 804-810. |
23 | WANG Xu, ZHANG Peng, WANG Tong, et al. Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode[J]. Journal of Electroanalytical Chemistry, 2018, 823: 545-552. |
24 | 赵豆豆, 汝强, 郭凌云, 等. 泡沫镍上生长纳米片ZnCo2O4负极材料[J]. 电池, 2016, 46(2): 61-64. |
ZHAO Doudou, RU Qiang, GUO Lingyun, et al. ZnCo2O4 nanoflake arrays grown on Ni foam as anode material[J]. Battery Bimonthly, 2016, 46(2): 61-64. | |
25 | 祁琰媛, 郑申波, 杨雪, 等. 泡沫镍负载Ag/MoO2直接电极的制备及其电化学性能[J]. 人工晶体学报, 2017, 46(10): 1923-1929. |
QI Yanyuan, ZHENG Shenbo, YANG Xue, et al. Synthesis and electrochemical properties of Ag/MoO2 anchored on Ni foam as binder-free anode for lithium ion batteries[J]. Journal of Synthetic Crystals, 2017, 46(10): 1923-1929. | |
26 | CHEN Huixin, ZHANG Qiaobao, WANG Jiexi, et al. Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries[J]. Nano Energy, 2014, 10: 245-258. |
27 | LI Qun, MIAO Xianguang, WANG Chengxiang, et al. Three-dimensional Mn-doped Zn2GeO4 nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2015, 3(42): 21328-21336. |
28 | WANG Fangfang, XING Yan, SU Zhongmin, et al. Single-crystalline CuGeO3 nanorods: synthesis, characterization and properties[J]. Materials Research Bulletin, 2013, 48(7):2654-2660. |
29 | WU Songping, WANG Rui, WANG Zhuolin, et al. CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Nanoscale, 2014, 6(14): 8350-8358. |
30 | FENG Jinkui, WANG Chunsheng, QIAN Yitai. In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries[J]. Materials Letters, 2014, 122: 327-330. |
[1] | MENG Xiangwei, WU Xiaoli, GAO Zhanpeng, LI Wenpeng, WANG Jingtao. Preparation and organic solvent nanofiltration performance of vermiculite lamellar membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5986-5995. |
[2] | HUANG Congxin, WANG Shunteng, FAN Yuying, JIAN Meipeng, TANG Chaochun, LIU Ruiping. Advance of ultrathin 2D porous nanosheets in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6859-6875. |
[3] | Youdi GUO,Jie REN,Deju WANG. Preparation of binderless ZSM-35 zeolite and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 548-553. |
[4] | Qi LI,Qiang ZHANG,Huiying ZHAO,Zhi CHEN,Jinxi SONG,Wei YAN. Synthesis of nanosheets Ga-MFI zeolites and its effect on selectivity of low carbon olefin in aviation fuel catalytic cracking reaction [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4075-4084. |
[5] | TONG Xiaomei, HAO Qinqin, YAN Ziying, ZHENG Boxue. Preparation and application of epoxy resin self-healing microcapsules modified by silicone [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3555-3561. |
[6] | WANG Tianxing, WANG Hequan. Synthesis of hierarchical ZnCo2O4 miroflowers assembled by mesoporous nanosheets and their applications in high specific energy lithium ion battery [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2302-2308. |
[7] | LI Lu, XU Jinming, QI Shixue, HUANG Yanqiang. Recent advances in titanium oxide nanosheets for catalytic applications [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2488-2496. |
[8] | CHEN Yanguang, XU Tingting, HAN Hongjing, WANG Xinhui, WANG Qiqi, HAN Hongwei, SONG Jun, SONG Hua. Research development of zeolites preparation from coal fly ash by microwave-hydrothermal synthesis [J]. Chemical Industry and Engineering Progree, 2015, 34(08): 2916-2924. |
[9] | GE Mingliang,CHEN Meng. Preparation and characterization of kenyaite [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3309-3312. |
[10] | WANG Guangjian,ZHANG Jinlong,CHU Yanpei . Study on preparation and catalytic oxidation desulfurization performance of Ti-MCM-41 synthesized at different hydrolysis conditions [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2970-2974. |
[11] | LU Shaoyan1,LI Xianguo2,WANG Licong1,ZHANG Huifeng1,WU Dan1,HUANG Xiping1,ZHANG Qi1. Influence of preparation conditions on the composition and morphology of magnesium hydroxide and basic magnesium chloride [J]. Chemical Industry and Engineering Progree, 2013, 32(04): 857-862. |
[12] | PAN Lili,JING Zhenzi,WU Ke,WANG Zhenlong. Hydrothermal solidification of clinoptilolite [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 617-621. |
[13] | CHEN Xingyun1,2,HE Jiangping2,SHU Yuanjie2. Preparation and properties of graphite nanosheets/epoxy composites [J]. Chemical Industry and Engineering Progree, 2011, 30(6): 1306-. |
[14] |
CHEN Zhongsheng1,2,GONG Weiping1,CHEN Tengfei1,XIONG Guoxuan2,XU Wenyuan2.
Development of room temperature ionic liquid for preparation of nanostructured TiO2 [J]. Chemical Industry and Engineering Progree, 2010, 29(6): 1096-. |
[15] | QIU Feng1,WEI Dongyan1,ZHANG Zhongdong2,WANG Yi2,LIU Tao2, CHEN Yiliang1,GUO Shiling1. Synthesis of zeolite L via in situ crystallization with water glass on kaolin microsphere [J]. Chemical Industry and Engineering Progree, 2010, 29(10): 1947-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |