Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 350-358.DOI: 10.16085/j.issn.1000-6613.2021-0199
• Materials science and technology • Previous Articles Next Articles
ZOU Xingyu1,2(), ZHAO Wenxia2(
), LIU Yong1, XU Ruimei2
Received:
2021-01-28
Revised:
2021-03-08
Online:
2022-01-24
Published:
2022-01-05
Contact:
ZHAO Wenxia
通讯作者:
赵文霞
作者简介:
邹星宇(1998—),男,硕士研究生,研究方向为MOFs材料制备、表征及电化学应用。E-mail:基金资助:
CLC Number:
ZOU Xingyu, ZHAO Wenxia, LIU Yong, XU Ruimei. Growth of MOFs on carbonized leaf vein network for preparing transparent supercapacitor[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 350-358.
邹星宇, 赵文霞, 刘勇, 许瑞梅. 炭化叶脉网络生长MOFs材料制备透明超级电容器[J]. 化工进展, 2022, 41(1): 350-358.
1 | 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
LI X Y, BAI T J, WENG X, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J].Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. | |
2 | TAKEI K, HONDA W, HARADA S, et al. Toward flexible and wearable human-interactive health-monitoring devices[J]. Advanced Healthcare Materials, 2015, 4(4): 487-500. |
3 | WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress[J]. Advanced Materials, 2014, 26(28): 4763-4782. |
4 | CHEN R Y, REN S H, KNAPP M, et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage[J]. Advanced Energy Materials, 2015, 5(9): 1401814. |
5 | KIM S Y, JEONG H M, KWON J H, et al. Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life[J]. Energy & Environmental Science, 2015, 8(1): 188-194. |
6 | YAN J, FAN Z J, SUN W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2 graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12): 2632-2641. |
7 | CHENG H H, DONG Z L, HU C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434. |
8 | GUO K, MA Y, LI H Q, et al. Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending[J]. Small, 2016, 12(8): 1024-1033. |
9 | HAN B, HUANG Y L, LI R P, et al. Bio-inspired networks for optoelectronic applications[J]. Nature Communications, 2014, 5(1): 5674. |
10 | CHEN S Q, SHI B B, HE W D, et al. Quasifractal networks as current collectors for transparent flexible supercapacitors[J]. Advanced Functional Materials, 2019, 29(48): 1906618. |
11 | ALKORDI M H, LIU Y L, LARSEN R W, et al. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts[J]. Journal of the American Chemical Society, 2008, 130(38): 12639-12641. |
12 | GUO Y X, FENG X, HAN T, et al. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds[J]. Journal of the American Chemical Society, 2014, 136(44): 15485-15488. |
13 | KUNDU T, MITRA S, PATRA P, et al. Mechanical downsizing of a gadolinium(Ⅲ)-based metal-organic framework for anticancer drug delivery[J]. Chemistry: A European Journal, 2014, 20(33): 10514-10518. |
14 | CHEN X F, DING N, ZANG H, et al. Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J]. Journal of Chromatography A, 2013, 1304: 241-245. |
15 | GAO Y L, WU J X, ZHANG W, et al. The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors[J]. Materials Letters, 2014, 128: 208-211. |
16 | KAUR R, PAUL A K, DEEP A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene[J]. Forensic Science International, 2014, 242: 88-93. |
17 | LEE D Y, SHINDE D V, KIM E K, et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous and Mesoporous Materials, 2013, 171: 53-57. |
18 | WANG L J, DENG H X, FURUKAWA H, et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals[J]. Inorganic Chemistry, 2014, 53(12): 5881-5883. |
19 | THI T V, RAI A K, GIM J, et al. High performance of Co-doped NiO nanoparticle anode material for rechargeable lithium ion batteries[J]. Journal of Power Sources, 2015, 292: 23-30. |
20 | MAI Y J, TU J P, XIA X H, et al. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(15): 6388-6393. |
21 | ZHANG J H, CAI G F, ZHOU D, et al. Co-doped NiO nanoflake array films with enhanced electrochromic properties[J]. Journal of Materials Chemistry C, 2014, 2(34): 7013-7021. |
22 | JIAO Y, PEI J, CHEN D H, et al. Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(3): 1094-1102. |
23 | HU G X, TANG C H, LI C X, et al. The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances[J]. Journal of the Electrochemical Society, 2011, 158(6): A695. |
24 | WANG C H, ZHANG X, ZHANG D C, et al. Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability[J]. Electrochimica Acta, 2012, 63: 220-227. |
25 | WEI T Y, CHEN C H, CHIEN H C, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials, 2010, 22(3): 347-351. |
26 | YUAN C Z, LI J Y, HOU L R, et al. Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors[J]. Journal of Materials Chemistry, 2012, 22(31): 16084-16090. |
27 | YOUNG C, SALUNKHE R R, ALSHEHRI S M, et al. High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures[J]. Journal of Materials Chemistry A, 2017, 5(23): 11834-11839. |
28 | CHEN S R, XUE M, LI Y Q, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(40): 20145-20152. |
29 | QU C, ZHAO B T, JIAO Y, et al. Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability[J]. ACS Energy Letters, 2017, 2(6): 1263-1269. |
30 | YOUNG C, KIM J, KANETI Y V, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications[J]. ACS Applied Energy Materials, 2018, 1(5): 2007-2015. |
31 | LEE J W, AHN T, SOUNDARARAJAN D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior[J]. Chemical Communications, 2011, 47(22): 6305-6307. |
32 | LIANG J B, MA R Z, IYI N, et al. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: a route to positively charged Co-Ni hydroxide nanosheets with tunable composition[J]. Chemistry of Materials, 2010, 22(2): 371-378. |
33 | YANG J, YU C, FAN X M, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1299-1307. |
34 | XIA H C, ZHANG J N, YANG Z, et al. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances[J]. Nano-Micro Letters, 2017, 9(4): 1-11. |
35 | YE C J, QIN Q Q, LIU J Q, et al. Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy[J]. Journal of Materials Chemistry A, 2019, 7(9): 4998-5008. |
36 | 付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3): 495-501. |
FU Y J, XIONG C X. Double metal MOF-based composite structure and performance as supercapacitor electrode[J]. Energy Storage Science and Technology, 2018, 7(3): 495-501. | |
37 | ZHANG D J, SHI H Z, ZHANG R C, et al. Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances[J]. RSC Advances, 2015, 5(72): 58772-58776. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[10] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[11] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[12] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[13] | GUO Pengju, HE Xiaobo, YIN Fengxiang. Research progress in MOF-based catalysts for electrocatalytic nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1797-1810. |
[14] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[15] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |