Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 1-16.DOI: 10.16085/j.issn.1000-6613.2021-0170
• Invited review • Previous Articles Next Articles
ZHANG Penghui(), LI Yanchun, HU Huaisheng, QI Huili, HU Haobin
Received:
2021-01-25
Revised:
2021-02-26
Online:
2022-01-24
Published:
2022-01-05
Contact:
ZHANG Penghui
通讯作者:
张鹏会
作者简介:
张鹏会(1983—),男,硕士,副教授,研究方向为光催化剂。E-mail:基金资助:
CLC Number:
ZHANG Penghui, LI Yanchun, HU Huaisheng, QI Huili, HU Haobin. Preparation of biochar-based photocatalysts, properities and environmental applications: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 1-16.
张鹏会, 李艳春, 胡怀生, 齐慧丽, 胡浩斌. 生物炭基光催化剂的制备、性能及环境应用研究进展[J]. 化工进展, 2022, 41(1): 1-16.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0170
1 | TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: a review[J]. Bioresource Technology, 2016, 212: 318-333. |
2 | PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring[J]. Water Research, 2015, 72: 3-27. |
3 | LI D, SHI W D. Recent developments in visible-light photocatalytic degradation of antibiotics[J]. Chinese Journal of Catalysis, 2016, 37(6): 792-799. |
4 | KÜMMERER K. Antibiotics in the aquatic environment — A review. Part I[J]. Chemosphere, 2009, 75(4): 417-434. |
5 | KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: a review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. |
6 | AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. |
7 | ELEOTÉRIO I C, FORTI J C, ANDRADE A R. Electrochemical treatment of wastewater of veterinary industry containing antibiotics[J]. Electrocatalysis, 2013, 4(4): 283-289. |
8 | WANG J L, XU L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251-325. |
9 | SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
10 | BASAVARAJAPPA P S, PATIL S B, GANGANAGAPPA N, et al. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7764-7778. |
11 | PATIL S B, BASAVARAJAPPA P S, GANGANAGAPPA N, et al. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13022-13039. |
12 | 洪孝挺, 王正鹏, 陆峰, 等. 可见光响应型非金属掺杂TiO2的研究进展[J]. 化工进展, 2004, 23(10): 1077-1080. |
HONG Xiaoting, WANG Zhengpeng, LU Feng, et al. Study on visible light-activated non-metal doped titanium dioxide[J]. Chemical Industry and Engineering Progress, 2004, 23(10): 1077-1080. | |
13 | RODRIGUEZ-NARVAEZ O M, PERALTA-HERNANDEZ J M, GOONETILLEKE A, et al. Biochar-supported nanomaterials for environmental applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 21-33. |
14 | COLMENARES J C, VARMA R S, LISOWSKI P. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources[J]. Green Chemistry, 2016, 18(21): 5736-5750. |
15 | MIAN M M, LIU G J. Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications[J]. RSC Advances, 2018, 8(26): 14237-14248. |
16 | 王靖宜, 王丽, 张文龙, 等. 生物炭基复合材料制备及其对水体特征污染物的吸附性能[J]. 化工进展, 2019, 38(8): 3838-3851. |
WANG Jingyi, WANG Li, ZHANG Wenlong, et al. Preparation of biochar-based composites and their adsorption performances for characteristic contaminants in wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3838-3851. | |
17 | 张鹏会, 李艳春, 胡浩斌, 等. 银杏叶生物炭对亚甲基蓝的吸附特性[J]. 环境污染与防治, 2017, 39(11): 1229-1234. |
ZHANG Penghui, LI Yanchun, HU Haobin, et al. Methylene blue adsorption characteristics onto biochar derived fromGinkgo biloba[J]. Environmental Pollution & Control, 2017, 39(11): 1229-1234. | |
18 | LI H Q, HU J T, MENG Y, et al. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of the Total Environment, 2017, 603/604: 39-48. |
19 | DAI L C, ZHU W K, HE L, et al. Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal[J]. Bioresource Technology, 2018, 267: 510-516. |
20 | OLADIPO A A, IFEBAJO A O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis[J]. Journal of Environmental Management, 2018, 209: 9-16. |
21 | WEI J, LIU Y T, LI J, et al. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar[J]. Chemosphere, 2019, 236: 124254. |
22 | FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B: Environmental, 2017, 214: 34-45. |
23 | KIM J R, KAN E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst[J]. Journal of Environmental Management, 2016, 180: 94-101. |
24 | ZHANG H Y, WANG Z W, LI R N, et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices[J]. Chemosphere, 2017, 185: 351-360. |
25 | 崔丹丹, 蒋剑春, 孙康, 等. 负载二氧化钛竹活性炭的制备及其性能的研究[J]. 生物质化学工程, 2011, 45(1): 29-32. |
CUI Dandan, JIANG Jianchun, SUN Kang, et al. Preparation and application of TiO2 bamboo activated carbon[J]. Biomass Chemical Engineering, 2011, 45(1): 29-32. | |
26 | SILVESTRI S, GONÇALVES M G, SILVA VEIGA P A DA, et al. TiO2 supported on Salvinia molesta biochar for heterogeneous photocatalytic degradation of Acid Orange 7 dye[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102879. |
27 | ZHANG S C, LU X J. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent[J]. Chemosphere, 2018, 206: 777-783. |
28 | CAI X X, LI J, LIU Y G, et al. Titanium dioxide-coated biochar composites as adsorptive and photocatalytic degradation materials for the removal of aqueous organic pollutants[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(3): 783-791. |
29 | 史良于. 氮掺杂二氧化钛/生物炭的制备及其光催化性能的研究[D]. 西安: 西北大学, 2018. |
SHI Liangyu. Preparation and photocatalytic property of N-doped TiO2/biochar[D]. Xi’an: Northwest University, 2018. | |
30 | 庞月红, 刘娟, 孙梦梦, 等. TiO2/生物质活性炭复合材料的制备和吸附光降解性能[J]. 化学通报, 2018, 81(5): 433-438. |
PANG Yuehong, LIU Juan, SUN Mengmeng, et al. Preparation and photo degradation property of TiO2/bio-activated carbon composites[J]. Chemistry, 2018, 81(5): 433-438. | |
31 | 马晓军, 何淑娟. Mn、N共掺杂TiO2负载竹质活性炭纤维的制备及可见光光催化性能[J]. 复合材料学报, 2016, 33(7): 1591-1597. |
MA Xiaojun, HE Shujuan. Preparation and visible light photocatalytic properties of Mn-N co-doped TiO2 loaded bamboo based activated carbon fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1591-1597. | |
32 | XIE X Y, LI S, ZHANG H Y, et al. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation[J]. Science of the Total Environment, 2019, 659: 529-539. |
33 | XUE H, CHEN Y L, LIU X P, et al. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO2 hybrids[J]. Materials Science and Engineering C, 2018, 82: 197-203. |
34 | 王家旻, 梁淑芬, 李彦涵, 等. 松子壳基活性炭光催化剂的制备及其催化性能研究[J]. 可再生能源, 2020, 38(1): 8-12. |
WANG Jiamin, LIANG Shufen, LI Yanhan, et al. Preparation and catalytic properties of pine nut shell-based activated carbon-based photocatalyst[J]. Renewable Energy Resources, 2020, 38(1): 8-12. | |
35 | LISOWSKI P, COLMENARES J C, MAŠEK O, et al. Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6274-6287. |
36 | LISOWSKI P, COLMENARES J C, MAŠEK O, et al. Design and fabrication of TiO2/lignocellulosic carbon materials: relevance of low-temperature sonocrystallization to photocatalysts performance[J]. ChemCatChem, 2018, 10(16): 3469-3480. |
37 | PENG X M, WANG M, HU F P, et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution[J]. Journal of Alloys and Compounds, 2019, 770: 1055-1063. |
38 | DJELLABI R, YANG B, WANG Y, et al. Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(Ⅵ) under narrow visible light[J]. Chemical Engineering Journal, 2019, 366: 172-180. |
39 | 张梦媚, 何世颖, 唐婉莹, 等. TiO2/生物炭复合材料处理低浓度氨氮废水[J]. 环境科学研究, 2017, 30(9): 1440-1447. |
ZHANG Mengmei, HE Shiying, TANG Wanying, et al. Disposal of low concentration ammonia-nitrogen wastewater using TiO2/biochar composite[J]. Research of Environmental Sciences, 2017, 30(9): 1440-1447. | |
40 | VINAYAGAM M, RAMACHANDRAN S, RAMYA V, et al. Photocatalytic degradation of Orange G dye using ZnO/biomass activated carbon nanocomposite[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3726-3734. |
41 | DONAR Y O, BILGE S, SıNAĞ A, et al. TiO2 /carbon materials derived from hydrothermal carbonization of waste biomass: a highly efficient, low-cost visible-light-driven photocatalyst[J]. ChemCatChem, 2018, 10(5): 1134-1139. |
42 | 康宏平, 孙振亚, 刘建永, 等. Ag+-TiO2/AC复合材料的可见光吸附-光催化协同作用[J]. 环境工程学报, 2015, 9(4): 1620-1624. |
KANG Hongping, SUN Zhenya, LIU Jianyong, et al. Adsorption-visible photocatalytic synergy of Ag+-TiO2/AC composite[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1620-1624. | |
43 | BEGUM S, AHMARUZZAMAN M. Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen[J]. Applied Surface Science, 2018, 449: 780-789. |
44 | GHOLAMI P, KHATAEE A, SOLTANI R D C, et al. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite[J]. Journal of Hazardous Materials, 2020, 382: 121070. |
45 | YE S J, YAN M, TAN X F, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J]. Applied Catalysis B: Environmental, 2019, 250: 78-88. |
46 | PEÑAS-GARZÓN M, GÓMEZ-AVILÉS A, BEDIA J, et al. Effect of activating agent on the properties of TiO2/activated carbon heterostructures for solar photocatalytic degradation of acetaminophen[J]. Materials, 2019, 12(3): 378. |
47 | LI S, WANG Z R, XIE X Y, et al. Fabrication of vessel-like biochar-based heterojunction photocatalyst Bi2S3/BiOBr/BC for diclofenac removal under visible LED light irradiation: mechanistic investigation and intermediates analysis[J]. Journal of Hazardous Materials, 2020, 391: 121407. |
48 | WANG T Y, LIU S X, MAO W, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of Rhodamine B and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 389: 121827. |
49 | LIU M Y, ZHENG Y F, SONG X C. Biomass assisted synthesis of 3D hierarchical structure BiOX(X Cl, Br)-(CMC) with enhanced photocatalytic activity[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5287-5294. |
50 | LU L L, SHAN R, SHI Y Y, et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange[J]. Chemosphere, 2019, 222: 391-398. |
51 | LI M, HUANG H W, YU S X, et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X=Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar[J]. Applied Surface Science, 2016, 386: 285-295. |
52 | LI S, WANG Z W, ZHAO X T, et al. Insight into enhanced carbamazepine photodegradation over biochar-based magnetic photocatalyst Fe3O4/BiOBr/BC under visible LED light irradiation[J]. Chemical Engineering Journal, 2019, 360: 600-611. |
53 | WANG B, LIU B, JI X X, et al. Synthesis, characterization, and photocatalytic properties of bamboo charcoal/TiO₂ composites using four sizes powder[J]. Materials, 2018, 11(5): E670. |
54 | HUANG H B, WANG Y, JIAO W B, et al. Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7871-7879. |
55 | LI K X, HUANG Z A, ZHU S Y, et al. Removal of Cr(Ⅵ) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems[J]. Applied Catalysis B: Environmental, 2019, 243: 386-396. |
56 | FAZAL T, RAZZAQ A, JAVED F, et al. Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite[J]. Journal of Hazardous Materials, 2020, 390: 121623. |
57 | TALUKDAR K, JUN B M, YOON Y, et al. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A[J]. Journal of Hazardous Materials, 2020, 398: 123025. |
58 | ZHAI Y L, DAI Y Z, GUO J, et al. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation[J]. Journal of Colloid and Interface Science, 2020, 560: 111-121. |
59 | PI L, JIANG R, ZHOU W C, et al. G-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants[J]. Applied Surface Science, 2015, 358: 231-239. |
60 | MIAN M M, LIU G J, YOUSAF B, et al. One-step synthesis of N-doped metal/biochar composite using NH3-ambiance pyrolysis for efficient degradation and mineralization of Methylene Blue[J]. Journal of Environmental Sciences, 2019, 78: 29-41. |
61 | LU Z L, LINDNER E, MAYER H A. Applications of sol-gel-processed interphase catalysts[J]. Chemical Reviews, 2002, 102(10): 3543-3578. |
62 | WIGHT A P, DAVIS M E. Design and preparation of organic-inorganic hybrid catalysts[J]. Chemical Reviews, 2002, 102(10): 3589-3614. |
63 | SCHWARZ J A, CONTESCU C, CONTESCU A. Methods for preparation of catalytic materials[J]. Chemical Reviews, 1995, 95(3): 477-510. |
64 | LI Y J, ZHANG S Y, YU Q M, et al. The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method[J]. Applied Surface Science, 2007, 253(23): 9254-9258. |
65 | RAMANDI S, ENTEZARI M H, GHOWS N. Sono-synthesis of solar light responsive S-N-C-tri doped TiO2 photo-catalyst under optimized conditions for degradation and mineralization of Diclofenac[J]. Ultrasonics Sonochemistry, 2017, 38: 234-245. |
66 | ZHOU W Q, YU C L, FAN Q Z, et al. Ultrasonic fabrication of N-doped TiO2 nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity[J]. Chinese Journal of Catalysis, 2013, 34(6): 1250-1255. |
67 | DARR J A, ZHANG J, MAKWANA N M, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions[J]. Chemical Reviews, 2017, 117(17): 11125-11238. |
68 | MAMAGHANI A H, HAGHIGHAT F, LEE C S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: preparation, characterization, properties, and performance[J]. Chemosphere, 2019, 219: 804-825. |
69 | WANG Y F, DONG M, GUO M M, et al. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method[J]. Materials Science and Engineering C, 2017, 77: 293-299. |
70 | 张鹏会, 李艳春, 胡浩斌, 等. 银杏叶生物炭对不同染料的吸附作用[J]. 化工新型材料, 2020, 48(9): 212-217. |
ZHANG Penghui, LI Yanchun, HU Haobin, et al. Sorption property of different dyes by ginkgo biloba biochar[J]. New Chemical Materials, 2020, 48(9): 212-217. | |
71 | ZHANG K K, SUN P, KHAN A, et al. Photochemistry of biochar during ageing process: reactive oxygen species generation and benzoic acid degradation[J]. Science of the Total Environment, 2021, 765: 144630. |
72 | LUO L J, YANG Y, XIAO M, et al. A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of Bisphenol A by adsorption and photocatalytic degradation[J]. Chemical Engineering Journal, 2015, 262: 1275-1283. |
73 | KUMAR A, SHALINI, SHARMA G, et al. Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337: 118-131. |
74 | SHI J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts[J]. Chemical Reviews, 2013, 113(3): 2139-2181. |
75 | GAO N L, LU Z Y, ZHAO X X, et al. Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass[J]. Chemical Engineering Journal, 2016, 304: 351-361. |
76 | MENG L R, YIN W H, WANG S S, et al. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity[J]. Chemosphere, 2020, 239: 124713. |
77 | SHI M J, WEI W, JIANG Z F, et al. Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst[J]. RSC Advances, 2016, 6(30): 25255-25266. |
78 | DJELLABI R, YANG B, XIAO K, et al. Unravelling the mechanistic role of TiOC bonding bridge at titania/lignocellulosic biomass interface for Cr(Ⅵ) photoreduction under visible light[J]. Journal of Colloid and Interface Science, 2019, 553: 409-417. |
79 | WANG W D, SERP P, KALCK P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method[J]. Journal of Molecular Catalysis A: Chemical, 2005, 235(1/2): 194-199. |
80 | XU W Q, PIGNATELLO J J, MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13): 7129-7136. |
81 | YU X D, GONG W W, LIU X H, et al. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides[J]. Journal of Hazardous Materials, 2011, 198: 340-346. |
82 | YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5: 16221. |
83 | 李艳春, 张鹏会, 王德乾, 等. 磁性银杏叶生物炭对罗丹明B的吸附特性[J]. 功能材料, 2019, 50(5): 5121-5127. |
LI Yanchun, ZHANG Penghui, WANG Deqian, et al. Rhodamine B adsorption characteristics on magnetic biochar derived from Ginkgo Biloba[J]. Journal of Functional Materials, 2019, 50(5): 5121-5127. | |
84 | WU F J, LIU W, QIU J L, et al. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal[J]. Applied Surface Science, 2015, 358: 425-435. |
85 | KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions[J]. Environmental Science & Technology, 2011, 45(19): 8559-8566. |
86 | 赵长伟, 唐文晶, 贾文娟, 等. 纳滤去除水中新兴污染物的研究进展[J]. 膜科学与技术, 1-13[2020-12-28].. |
ZHAO Changwei, TANG Wenjing, JIA Wenjuan, et al. Applied research progress of nanofiltration membrane technology for removing theemerging pollutants in water[J]. Membrane Science and Technology:1-13[2020-12-28]. . | |
87 | 王建龙. 废水中药品及个人护理用品(PPCPs)的去除技术研究进展[J]. 四川师范大学学报(自然科学版), 2020, 43(2): 143-172. |
WANG Jianlong. Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: a review[J]. Journal of Sichuan Normal University (Natural Science), 2020, 43(2): 143-172. | |
88 | 蒋博龙, 史顺杰, 蒋海林, 等. 金属有机框架材料吸附处理苯酚污水机理研究进展[J]. 化工进展, 2021, 40(8): 4525-4539. |
JIANG Bolong, SHI Shunjie, JIANG Hailin,et al.Research progress in phenol adsorption mechanism over metal-organic framework from wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4525-4539. | |
89 | ZHANG Y F, JIN X Y, WANG Y, et al. Effects of experimental parameters on phenol degradation by cathodic microarc plasma electrolysis[J]. Separation and Purification Technology, 2018, 201: 179-185. |
90 | ZHOU M M, WU Y N, QIAO J L, et al. The removal of Bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al)[J]. Journal of Colloid and Interface Science, 2013, 405: 157-163. |
91 | YE J E, LIU J H, HUANG Z J, et al. Effect of reduced graphene oxide doping on photocatalytic reduction of Cr(Ⅵ) and photocatalytic oxidation of tetracycline by ZnAlTi layered double oxides under visible light[J]. Chemosphere, 2019, 227: 505-513. |
92 | 田雪蕊, 韩占刚. 溶液中Cr(Ⅵ)离子的催化还原研究进展[J]. 河北师范大学学报(自然科学版), 2018, 42(2): 148-156. |
TIAN Xuerui, HAN Zhangang. Research progress in catalytic reduction of hexavalent chromium ion in solution[J]. Journal of Hebei Normal University (Natural Science Edition), 2018, 42(2): 148-156. | |
93 | YANG H F, LI Z F, FU P, et al. Cr(Ⅵ) removal from a synthetic solution using a novel carbonaceous material prepared from oily sludge of tank bottom[J]. Environmental Pollution, 2019, 249: 843-850. |
94 | NANDA B, PRADHAN A C, PARIDA K M. Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(Ⅵ) [J]. Chemical Engineering Journal, 2017, 316: 1122-1135. |
95 | WOJTYŁA S, BARAN T. Insight on doped ZnS and its activity towards photocatalytic removing of Cr(Ⅵ) from wastewater in the presence of organic pollutants[J]. Materials Chemistry and Physics, 2018, 212: 103-112. |
96 | 王子帅, 王耀强, 肖刚, 等. 磁性纳米Fe3O4@TiO2可见光下光催化还原Cr(Ⅵ)[J]. 化工学报, 2019, 70(10): 4062-4071. |
WANG Zishuai, WANG Yaoqiang, XIAO Gang, et al. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light[J]. CIESC Journal, 2019, 70(10): 4062-4071. | |
97 | WANG Q, SHI X D, LIU E Q, et al. Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2016, 317: 8-16. |
98 | 李靖, 刘天宝, 朱亚鑫, 等. 溶剂热合成可见光响应硫氮共掺杂TiO2光催化剂及其催化还原水中Cr(Ⅵ)[J]. 材料导报, 2020, 34(21): 21045-21051. |
LI Jing, LIU Tianbao, ZHU Yaxin, et al. Solvothermal synthesis of visible-light driven S, N co-doped titanium dioxide photocatalyst and photocatalytic reduction of aqueous Cr(Ⅵ)[J]. Materials Reports, 2020, 34(21): 21045-21051. | |
99 | WU Z Y, ZHU W P, LIU Y, et al. An integrated three-dimensional electrochemical system for efficient treatment of coking wastewater rich in ammonia nitrogen[J]. Chemosphere, 2020, 246: 125703. |
100 | 丁鑫, 高克昌, 郝二国, 等. 超重力强化折点氯化法处理低浓度氨氮废水[J]. 化工进展, 2021, 40(7): 4083-4090. |
DING Xin, GAO Kechang, HAO Erguo, et al. Treatment of low concentration ammonia nitrogen wastewater by high gravity enhanced breakpoint chlorination[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4083-4090. | |
101 | ZHANG W L, FU R, WANG L, et al. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles[J]. Science of the Total Environment, 2019, 668: 815-824. |
102 | 姜瑞, 曾红云, 王强. 氨氮废水处理技术研究进展[J]. 环境科学与管理, 2013, 38(6): 131-134. |
JIANG Rui, ZENG Hongyun, WANG Qiang. Research progress of ammonia nitrogen wastewater treatment technology[J]. Environmental Science and Management, 2013, 38(6): 131-134. | |
103 | 刘兴社, 刘永军, 刘喆, 等. 煤化工废水中酚类物质、氨氮的处理方法研究进展[J]. 化工进展, 2021, 40(1): 505-514. |
LIU Xingshe, LIU Yongjun, LIU Zhe, et al. Research progress on treatment methods of phenolic substances and ammonia nitrogen in coal chemical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 505-514. | |
104 | 李怡冰, 李涵, 黄文轩, 等.生物炭的制备及其在强化电子传递和催化性能等的研究进展[J].环境科学研究, 2021, 34(5): 1157-1167. |
LI Yibing, LI Han, HUANG Wenxuan, et al. Research progress on the biochar production and its applications in enhancingelectron transport and catalysis performance[J]. Research of Environmental Sciences, 2021, 34(5): 1157-1167. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[3] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[4] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[5] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[6] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[7] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[8] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[9] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[10] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[15] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |