1 |
HU Z, CHEN G. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content[J]. Advanced Materials, 2014, 26(34): 5950-5956.
|
2 |
ZHOU X J, WANG J, NIE J J, et al. Poly(N-isopropylacrylamide)-based ionic hydrogels: synthesis, swelling properties, interfacial adsorption and release of dyes[J]. Polymer Journal, 2016, 48(4): 431-438.
|
3 |
OKUMUR Y, ITO K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links[J]. Advanced Materials, 2001, 13(7): 485-487.
|
4 |
HUANG T, XU H G, JIAO K X, et al. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel[J]. Advanced Materials, 2007, 19(12): 1622-1626.
|
5 |
GONG J P. Why are double network hydrogels so tough? [J]. Soft Matter, 2010, 6(12): 2583-2590.
|
6 |
CHEN Q, ZHU L, CHEN H, et al. A novel design strategy for fully physically-linked double network hydrogels with tough, fatigue resistant, and self-healing properties[J]. Advanced Functional Materials, 2015, 25(10): 1598-1607.
|
7 |
ZHANG H, HU X T, YANG N, et al. Thermo-sensitive semi-interpenetrating collagen hydrogels and effects on L929 cell' s behavior[J]. Acta Polymerica Sinica, 2016(3): 300-306.
|
8 |
HARAGUCHI K, TAKEHISA T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J]. Advanced Materials, 2002, 14(16): 1120.
|
9 |
SHI F K, ZHONG M, ZHANG L Q, et al. Preparation of hierachically crosslinked poly(acrylamide) hydrogels by assistance of crystallization of poly(vinyl alcohol) [J]. Acta Polymerica Sinica, 2017(3): 1-7.
|
10 |
DU Z S, HU Y, GU X Y, et al. Poly(acrylamide) microgel-reinforced poly(acrylamide)/hectorite nanocomposite hydrogels[J]. Colloid Surface A, 2016, 489: 1-8.
|
11 |
HU M, GU X Y, HU Y, et al. Low chemically cross-linked PAM/C-Dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states[J]. Macromolecules, 2016, 49(8): 3174-3183.
|
12 |
HARAGUCHI K, VARADE D. Platinum-polymer-clay nanocomposite hydrogels via exfoliated clay-mediated in situ reduction [J]. Polymer, 2014, 55(10): 2496-2500.
|
13 |
ZHU P, HU M, DENG Y H, et al. One-pot fabrication of a novel agar-polyacrylamide/graphene oxide nanocomposite double network hydrogel with high mechanical properties[J]. Advanced Engineering Materials, 2016, 18(10): 1799-1807.
|
14 |
YANG D, PENG X, ZHONG L, et al. Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals [J]. RSC Advances, 2015, 5(18): 13878-13885.
|
15 |
LI S, WANG H, HUANG W, et al. Facile preparation of pH-sensitive poly(acrylic acid-co-acrylamide)/SiO2 hybrid hydrogels with high strength by in situ frontal polymerization[J]. Colloid and Polymer Science, 2014, 292(1): 107-113.
|
16 |
ZHANG E, WANG T, LIAN C, et al. Robust and thermo-response graphene-PNIPAm hybrid hydrogels reinforced by hectorite clay [J]. Carbon, 2013, 62(5): 117-126.
|
17 |
ZHANG E, WANG T, ZHAO L, et al. Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22855-22861.
|
18 |
LI G C, ZHAO Y X, ZHANG L Z, et al. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on schwann cells attachment and proliferation[J]. Colloid Surface B, 2016, 143: 547-556.
|
19 |
LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1): 362-381.
|
20 |
HU M, GU X Y, HU Y, et al. PVA/Carbon Dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity[J]. Macromolecular Materials and Engineering, 2016, 301(11): 1352-1362.
|
21 |
ZHAO J, WANG Z, WHITE J C, et al. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation[J]. Environmental Science & Technology, 2014, 48(17): 9995-10009.
|