Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 426-433.DOI: 10.16085/j.issn.1000-6613.2021-0184
• Resources and environmental engineering • Previous Articles Next Articles
XIAO Boren(), YANG Jinxing, LIU Haipeng, QI Lihong(), ZUO Guomin()
Received:
2021-01-26
Revised:
2021-03-08
Online:
2021-11-09
Published:
2021-10-25
Contact:
QI Lihong,ZUO Guomin
通讯作者:
齐丽红,左国民
作者简介:
肖博仁(1992—),男,硕士研究生,研究方向为特种污染控制与环境修复。E-mail:基金资助:
CLC Number:
XIAO Boren, YANG Jinxing, LIU Haipeng, QI Lihong, ZUO Guomin. Application of the catalysis and activation system based on hydrogen peroxide on the decontamination of hazardous chemicals[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 426-433.
肖博仁, 杨金星, 刘海鹏, 齐丽红, 左国民. 过氧化氢催化活化体系及其在危化品消毒中的应用[J]. 化工进展, 2021, 40(S1): 426-433.
分类 | 名称 | 典型化合物 |
---|---|---|
第一类 | 无机剧毒危化品 | 氰化钠、氰化钾、氰化镉、氰化氢、氰化银钾、三氧化二砷、亚砷酸钙、亚硒酸钠、亚硒酸氢钠 |
第二类 | 卤代烃及其卤化物 有机剧毒危化品 | 鼠甘伏、氟乙酸钠、氟乙酰胺、毒鼠硅、狄氏剂、艾氏剂、氟乙酸甲酯、碳氯灵、氯甲酸甲酯、氯甲酸乙酯、氯乙醇、全氯甲硫醇、三氯硝基甲烷、毒鼠磷、溴敌隆(3-[3-(4-溴联苯-4-基)-3-羟基-1-苯丙基]-4-羟基香豆素) |
第三类 | 有机磷、硫、砷及腈、胺等 有机剧毒危化品 | 八甲磷、速灭磷、甲硫磷、百治磷、效磷、甲基对氧磷、胺吸磷、硫环磷、丁硫环磷、内吸磷、对氧磷、对硫磷、乙拌磷、治螟磷、发硫磷、特丁硫磷、甲胺磷、涕灭威、苯硫酚、甲拌磷、氮丙啶、2-硝基-4-甲氧基苯胺、三丁胺、乙基氰、2-羟基丙腈、地虫硫膦、久效威 |
第四类 | 有机芳香环、稠环 及杂环化合物 | 灭鼠优、克百威(2, 3-二氢-2, 2-二甲基苯并呋喃-7-基-N-甲基氨基甲酸酯)、敌鼠、异氰酸苯酯、毒鼠强、杀鼠醚 |
第五类 | 化学战剂 | 沙林、梭曼、维埃克斯(VX)、芥子气、路易氏剂、光气、氢氰酸、氯化氰、苯氯乙酮、毕兹 |
第六类 | 其它有毒品 | 硫酸二甲酯、正硅酸甲酯 |
分类 | 名称 | 典型化合物 |
---|---|---|
第一类 | 无机剧毒危化品 | 氰化钠、氰化钾、氰化镉、氰化氢、氰化银钾、三氧化二砷、亚砷酸钙、亚硒酸钠、亚硒酸氢钠 |
第二类 | 卤代烃及其卤化物 有机剧毒危化品 | 鼠甘伏、氟乙酸钠、氟乙酰胺、毒鼠硅、狄氏剂、艾氏剂、氟乙酸甲酯、碳氯灵、氯甲酸甲酯、氯甲酸乙酯、氯乙醇、全氯甲硫醇、三氯硝基甲烷、毒鼠磷、溴敌隆(3-[3-(4-溴联苯-4-基)-3-羟基-1-苯丙基]-4-羟基香豆素) |
第三类 | 有机磷、硫、砷及腈、胺等 有机剧毒危化品 | 八甲磷、速灭磷、甲硫磷、百治磷、效磷、甲基对氧磷、胺吸磷、硫环磷、丁硫环磷、内吸磷、对氧磷、对硫磷、乙拌磷、治螟磷、发硫磷、特丁硫磷、甲胺磷、涕灭威、苯硫酚、甲拌磷、氮丙啶、2-硝基-4-甲氧基苯胺、三丁胺、乙基氰、2-羟基丙腈、地虫硫膦、久效威 |
第四类 | 有机芳香环、稠环 及杂环化合物 | 灭鼠优、克百威(2, 3-二氢-2, 2-二甲基苯并呋喃-7-基-N-甲基氨基甲酸酯)、敌鼠、异氰酸苯酯、毒鼠强、杀鼠醚 |
第五类 | 化学战剂 | 沙林、梭曼、维埃克斯(VX)、芥子气、路易氏剂、光气、氢氰酸、氯化氰、苯氯乙酮、毕兹 |
第六类 | 其它有毒品 | 硫酸二甲酯、正硅酸甲酯 |
类别 | 具体物质 |
---|---|
有机磷 | 敌敌畏、胺吸磷、甲拌磷、对氧磷、对硫磷等 |
有机硫 | 硫酸二甲酯、苯硫酚、硫化氢、乙硫醇、乙硫醚等 |
有机胺 | 涕灭威、克百威、灭鼠安、灭多虫、异索威、杀线威等 |
氰化物 | 氰化钠、氰化钾、羟基乙腈、异氰酸甲酯等 |
砷化物 | 三氧化二砷、砒霜、二氯苯胂、氯化亚胂、砷化氯等 |
卤化物 | 氯乙醇、全氯甲硫醇、全氟异丁烯、毒鼠磷等 |
类别 | 具体物质 |
---|---|
有机磷 | 敌敌畏、胺吸磷、甲拌磷、对氧磷、对硫磷等 |
有机硫 | 硫酸二甲酯、苯硫酚、硫化氢、乙硫醇、乙硫醚等 |
有机胺 | 涕灭威、克百威、灭鼠安、灭多虫、异索威、杀线威等 |
氰化物 | 氰化钠、氰化钾、羟基乙腈、异氰酸甲酯等 |
砷化物 | 三氧化二砷、砒霜、二氯苯胂、氯化亚胂、砷化氯等 |
卤化物 | 氯乙醇、全氯甲硫醇、全氟异丁烯、毒鼠磷等 |
活化剂类型 | 结构式 | 典型代表物 | 代表物结构 |
---|---|---|---|
酯类 | NOBS | ||
戊乙酰葡萄糖(PAG) | |||
1,2-丙二醇二乙酸酯 (PGDA) | |||
阿司匹林(Aspirin) | |||
酰胺类 | 四乙酰乙二胺(TAED) | ||
四乙酰基甘脲(TAGU) | |||
十八烷基己内酰胺 乙基二甲基氯化铵(PAP) | |||
脒类 | 乙酸甲脒 | ||
盐酸乙脒 | |||
胍类 | 乙酰胍(ACG) | ||
1,1-二甲基胍硫酸盐(DGA) | |||
氨基胍硫酸盐 | |||
腈类 | 乙腈(CH3CN) |
活化剂类型 | 结构式 | 典型代表物 | 代表物结构 |
---|---|---|---|
酯类 | NOBS | ||
戊乙酰葡萄糖(PAG) | |||
1,2-丙二醇二乙酸酯 (PGDA) | |||
阿司匹林(Aspirin) | |||
酰胺类 | 四乙酰乙二胺(TAED) | ||
四乙酰基甘脲(TAGU) | |||
十八烷基己内酰胺 乙基二甲基氯化铵(PAP) | |||
脒类 | 乙酸甲脒 | ||
盐酸乙脒 | |||
胍类 | 乙酰胍(ACG) | ||
1,1-二甲基胍硫酸盐(DGA) | |||
氨基胍硫酸盐 | |||
腈类 | 乙腈(CH3CN) |
1 | 李娜, 陈建宏. 2013—2019年我国危险化学品统计分析[J]. 应用化工, 2020, 49(5): 1261-1265. |
LI Na, CHEN Jianhong. Statistical analysis of hazardous chemicals in China from 2013 to 2019[J]. Applied Chemical Industry, 2020, 49(5): 1261-1265. | |
2 | 中国化学品安全协会. 2019年危险化学品典型事故反思[EB/OL]. [2020-04-25]. . |
China Chemical Safety Association. Reflection on typical accidents of hazardous chemicals in 2019[EB/OL]. . | |
3 | 张怀水. 我国化工产值占全球的40%重大事故连续8年下降[EB/OL]. [2019-09-18]. . |
ZHANG Huaishui. China's chemical output accounts for 40% of the world's total, and major accidents have declined for eight consecutive years[EB/OL]. [2019-09-18]. . | |
4 | 孙玉波, 王连军. 化学恐怖威胁防护谱系初探[M]. 北京: 化学工业出版社, 2013: 6-12. |
SUN Yubo, WANG Lianjun. Preliminary study on the protection spectrum of chemical terrorism threat[M]. Beijing: Chemical Industry Press, 2013: 6-12. | |
5 | 文上贤. 超级恐怖主义简介[J]. 核生化防护半年刊, 2005(80): 14-25. |
WEN Shangxian. Introduction to super terrorism[J]. Semi Annual Journal of Nuclear, Chemical and Biological Defense, 2005(80): 14-25. | |
6 | 慈颖, 王思, 王林, 等. 一种新型泡沫洗消剂对化学毒剂的洗消效果评价[J]. 中国国境卫生检疫杂志, 2017, 40(1): 39-42. |
Ying CI, WANG Si, WANG Lin, et al. Decontamination effect of a novel foam decontaminant on chemical toxants[J]. Chinese Frontier Health Quarantine, 2017, 40(1): 39-42. | |
7 | 聂志勇, 孙海鹏, 孙晓红, 等. 化学应急洗消技术及装备研究进展[J]. 军事医学, 2016, 40(4): 267-271. |
NIE Zhiyong, SUN Haipeng, SUN Xiaohong, et al. Emergency decontamination technology and equipment against chemical agents: research advances[J]. Military Medical Science, 2016, 40(4): 267-271. | |
8 | GEBREMEDHIN Mulu, FENTABIL Messele, COCHRANE Laura, et al. In vitro decontamination efficacy of the RSDL® (reactive skin decontamination lotion kit) lotion component against riot control agents: capsaicin, MaceTM (CN) and CS[J]. Toxicology Letters, 2020(332): 36-41. |
9 | 习海玲, 赵三平, 周文. 基于过氧化物的消毒技术研究进展[J]. 环境科学, 2013, 34(5): 1645-1652. |
XI Hailing, ZHAO Sanping, ZHOU Wen. Advances in peroxide-based decontaminating technologies[J]. Environmental Science, 2013, 34(5): 1645-1652. | |
10 | STONE Harry, David SEE, SMILEY Autumn, et al. Surface decontamination for blister agents Lewisite, sulfur mustard and agent yellow, a Lewisite and sulfur mustard mixture[J]. Journal of Hazardous Materials, 2016, 314: 59-66. |
11 | KOSKELA Harri. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective 1H-31P NMR spectroscopy[J]. Analytical Chemistry, 2010, 82(12): 5331-5340. |
12 | 贡玉凤. 溶解性有机物对Cr(Ⅵ)的去除及Cr(Ⅵ)催化氧化苯酚机制的研究[D]. 天津: 天津工业大学, 2015. |
GONG Yufeng. Removal of Cr(Ⅵ) by dissolved organic matter and mechanism of catalytic oxidation of phenol by Cr(Ⅵ)[D]. Tianjin: Tianjin University of Technology, 2015. | |
13 | SREEJA P H, SOSAMONY K J. A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment[J]. Procedia Technology, 2016, 24: 217-223. |
14 | ASAITHAMBI P, ALEMAYEHU E, SAJJADI B, et al. Electrical energy per order determination for the removal pollutant from industrial wastewater using UV/Fe2+/H2O2 process: optimization by response surface methodology[J]. Water Resources and Industry, 2017, 18: 17-32. |
15 | WANG L, CAO M, AI Z, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5): 30-32. |
16 | WANG J, LIU C, HUSSAIN I, et al. Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: the effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye[J]. RSC Advances, 2016, 6(59): 54623-54635. |
17 | GUO S, ZHANG G, YU J. Enhanced photo-Fenton degradatio of rhodamine B using grapheneoxide-amorphous FePO4 as effective and stable heterogeneous catalyst[J]. Journal of Colloid and Interface Science, 2015, 448: 460-466. |
18 | 宋佳秀, 李玲, 盛凡凡, 等.驯化污泥厌氧还原脱氯促进2, 4, 6-三氯酚矿化及胞外呼吸脱氯途径[J]. 环境科学, 2015, 36: 3764-3770. |
SONG Jiaxiu, LI Ling, SHENG Fanfan, et al. 2,4,6-Trichlorophenol mineralization promoted by anaerobic reductive dechlorination of acclimated sludge and extracellular respiration dechlorination pathway[J]. Environmental Science, 2015, 36: 3764-3770. | |
19 | WU D, CHEN Y, ZHANG Z, et al. Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition[J].Chemical Engineering Journal, 2016, 294: 49-57. |
20 | REN L, LU S Y, FANG J Z, et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst[J]. Catalysis Today, 2017, 281: 656-661. |
21 | 张磊, 习海玲, 王琦, 等. 过碳酸钠/钼酸钠体系对2-氯乙基乙基硫醚的消毒机理与动力学研究[J]. 环境化学, 2011, 30(10): 1695-1699. |
ZHANG Lei, XI Hailing, WANG Qi, al et, Kinetics and mechanism of the degradation reaction of2-chlororthyl ethyl sulfide by sodium percarbonate/ sodium molybdate[J]. Environmental Chemistry, 2011, 30(10): 1695-1699. | |
22 | ZHANG A Y, LIN T, HE Y Y, et al. Heterogeneous activation of H2O2 by defect-engineered TiO2-x single crystals for refractory pollutants degradation: a Fenton-like mechanism[J]. Journal of Hazardous Materials, 2016, 311: 81. |
23 | 唐俊玲. 双氧水漂白催化活化剂的制备及其在棉织物中的应用[D]. 西安: 西安工程大学, 2016. |
TANG Junling. Preparation of hydrogen peroxide bleaching catalyst and its application in cotton fabrics[D]. Xi'an: Xi'an Engineering University, 2016. | |
24 | WANG F F, WU Y, GAO Y, et al. Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron[J]. Separation & Purification Technology, 2016, 170: 337-343. |
25 | LIM S, LEE J J, HINKS D, et al. Bleaching of cotton with activated peroxide systems[J]. Coloration Technology, 2005, 121: 89-95. |
26 | NESTLER B. Use of formamidinium salts as bleach: US6028047[P]. 2000-02-22. |
27 | 王阔, 刘凯, 阎克路. 棉织物的低温活化漂白工艺及机理[J]. 印染, 2017, 43(3): 23-26. |
WANG Kuo, LIU Kai, YAN Kelu. Low-temperature activated bleaching processes and mechanism of cotton fabric[J]. China Dyeing & Finishing, 2017, 43(3): 23-26. | |
28 | LIU Kai, ZHANG Xuan, YAN Kelu. Low-temperature bleaching of cotton knitting fabric with H2O2/PAG system[J]. Cellulose, 2017(24): 1555-1561. |
29 | 李志刚, 高丽贤, 戴鸽. 羊绒纤维双氧水/NOBS活化体系低温漂白工艺[J]. 印染助剂, 2020, 37(7): 57-59. |
LI Zhigang, GAO Lixian, DAI Ge. Low temperature bleaching of cashmere fiber with hydrogen peroxide/NOBS activation system[J]. Textile Auxiliaries, 2020, 37(7): 57-59. | |
30 | 何铠君, 洪钰莹, 沈加加, 等. 羊绒纤维的H2O2/NOBS活化体系低温漂白[J]. 印染, 2019, 45(4): 1-4, 15. |
HE Kaijun, HONG Yuying, SHEN Jiajia, et al. Application of H2O2/NOBS activation system to low temperature bleaching process of cashmere fiber[J]. China Dyeing & Finishing, 2019, 45(4): 1-4, 15. | |
31 | CAI J Y, EVANS D J. Guanidine derivatives used as peroxide activators for bleaching cellulosic textiles[J]. Coloration Technology, 2007, 123: 115-118. |
32 | 安刚, 曹机良, 王柯钦. 活化剂乙酰胍在棉织物冷轧堆漂白中的应用[J].印染, 2013, 39(13): 10-13. |
AN Gang, CAO Jiliang, WANG Keqin. Application of acetylguanidine as an activator to cold pad-batch bleaching of cotton fabric[J]. China Dyeing & Finishing, 2013, 39(13): 10-13. | |
33 | 王壮, 王雪燕, 李钰颖, 等. 双氧水低温漂白促进剂研究进展[J]. 染整技术, 2020, 42(4): 9-16. |
WANG Zhuang, WANG Xueyan, LI Yuying, et al. Overview of hydrogen peroxide low temperature bleaching accelerator[J]. Textile Dyeing and Finishing Journal, 2020, 42(4): 9-16. | |
34 | QI Lihong, ZUO Guomin, CHENG Zhenxing, et al. Treatment of chemical warfare agents by combined sodium percarbonate with tetraacetylethylenediamine solution[J]. Chemical Engineering Journal, 2013, 229: 197-205. |
[1] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[2] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[5] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[8] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[10] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[11] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[12] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[13] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[14] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[15] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 866
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 376
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |