Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 281-290.DOI: 10.16085/j.issn.1000-6613.2020-2000
• Materials science and technology • Previous Articles Next Articles
XING Yijing1(), LIU Fang2, ZHANG Yalin2, LI Haibin1()
Received:
2020-09-30
Revised:
2021-01-12
Online:
2021-11-09
Published:
2021-10-25
Contact:
LI Haibin
通讯作者:
李海滨
作者简介:
邢以晶(1991—),女,博士研究生,研究方向为质子交换膜燃料电池。E-mail:基金资助:
CLC Number:
XING Yijing, LIU Fang, ZHANG Yalin, LI Haibin. Research progress on preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 281-290.
邢以晶, 刘芳, 张雅琳, 李海滨. 质子交换膜燃料电池膜电极制备方法的研究进展[J]. 化工进展, 2021, 40(S1): 281-290.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2000
1 | DING X, DIDARI S, FULLER T F, et al. Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers[J]. Journal of The Electrochemical Society, 2012, 159 (6): B746-B753. |
2 | JEONG H Y, YANG D S, HAN J H, et al. Novel interfacial bonding layers with controlled gradient composition profile for hydrocarbon-based membrane electrode assemblies[J]. Journal of Power Sources, 2018, 398: 1-8. |
3 | JEONG G, KIM M, HAN J, et al. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2016, 323: 142-146. |
4 | GUERRERO MORENO N, CISNEROS MOLINA M, GERVASIO D, et al. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 897-906. |
5 | BLADERGROEN B, SU H, PASUPATHI S, et al. Overview of membrane electrode assembly preparation methods for solid polymer electrolyte electrolyzer[J]. Electrolysis, 2012, 1: 46-59. |
6 | MAUGER S A, PFEILSTICKER J R, WANG M, et al. Fabrication of high-performance gas-diffusion-electrode based membrane-electrode assemblies[J]. Journal of Power Sources, 2020, 450: 227581. |
7 | LI Y, ZHOU Z, LIU X, et al. Modeling of PEM fuel cell with thin MEA under low humidity operating condition[J]. Applied Energy, 2019, 242: 1513-1527. |
8 | TANG H L, WANG S L, JIANG S P, et al. A comparative study of CCM and hot-pressed MEAs for PEM fuel cells[J]. Journal of Power Sources, 2007, 170 (1): 140-144. |
9 | DEBE M K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts[J]. Journal of the Electrochemical Society, 2013, 160 (6): F522-F534. |
10 | United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. DRIVE) Partnership. Fuel cell technical team roadmap[R]. United States: U.S. DRIVE Technical Teams, 2017. |
11 | KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11239-11245. |
12 | VIERRATH S, BREITWIESER M, KLINGELE M, et al. The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J]. Journal of Power Sources, 2016, 326: 170-175. |
13 | WEHKAMP N, BREITWIESER M, BÜCHLER A, et al. Directly deposited Nafion/TiO2 composite membranes for high power medium temperature fuel cells[J]. RSC Advances, 2016, 6(29): 24261-24266. |
14 | BREITWIESER M, MORONI R, SCHOCK J, et al. Water management in novel direct membrane deposition fuel cells under low humidification[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11412-11417. |
15 | BAYER T, PHAM H, SSASAKIK, et al. Spray deposition of Nafion membranes: electrode-supported fuel cells[J]. Journal of Power Sources, 2016, 327: 319-326. |
16 | BREITWIESER M, BAYER T, BüCHLER A, et al. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer[J]. Journal of Power Sources, 2017, 351: 145-150. |
17 | ZHAO J, SHAHGALDI S, OZDEN A, et al. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells[J]. Applied Energy, 2019, 255: 113802. |
18 | SU H, JAO T C, BARRON O, et al. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique[J]. Journal of Power Sources, 2014, 267: 155-159. |
19 | HUANG T H, SHEN H L, JAO T C, et al. Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13872-13879. |
20 | CHAPARRO A M, BENÍTEZ R, GUBLER L, et al. Study of membrane electrode assemblies for PEMFC, with cathodes prepared by the electrospray method[J]. Journal of Power Sources, 2007, 169(1): 77-84. |
21 | BENDER G, ZAWODZINSKI T A, SAAB A P. Fabrication of high precision PEFC membrane electrode assemblies[J]. Journal of Power Sources, 2003, 124(1): 114-117. |
22 | PARK I S, LI W, MANTHIRAM A. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells[J]. Journal of Power Sources, 2010, 195(20): 7078-7082. |
23 | DESCHAMPS F L, MAHY J G, LÉONARD A F, et al. A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: application to two coating techniques and two carbon supports[J]. Thin Solid Films, 2020, 695: 137751. |
24 | DING X, LIU J, HARRIS T A L. A review of the operating limits in slot die coating processes[J]. AIChE Journal, 2016, 62(7): 2508-2524. |
25 | STÄHLER M, STÄHLER A, SCHEEPERS F, et al. A completely slot die coated membrane electrode assembly[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7053-7058. |
26 | PASSALACQUA E L F, SQUADRITO G, PATTI A, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells effects on structure and performance[J]. Electrochimica Acta, 2001, 46: 799-805. |
27 | SASIKUMAR G, IHM J W, RYU H. Optimum Nafion content in PEM fuel cell electrodes[J]. Electrochimica Acta, 2004, 50(2-3): 601-605. |
28 | TABE Y A S, HAYASHI S, SUZUKI K,et al. Analysis of cathode catalyst layer structure and oxygen transport resistance depending on fabrication condition in PEMFC[J]. ECS Transactions, 2015, 69(17): 773-781. |
29 | KIM T H, YOO J H, MAIYALAGAN T, et al. Influence of the Nafion agglomerate morphology on the water-uptake behavior and fuel cell performance in the proton exchange membrane fuel cells[J]. Applied Surface Science, 2019, 481: 777-784. |
30 | FERNÁNDEZ R, FERREIRA P, DAZA L. PEMFC electrode preparation: influence of the solvent composition and evaporation rate on the catalytic layer microstructure[J]. Journal of Power Sources, 2005, 151: 18-24. |
31 | KIM T H, YI J Y, JUNG C Y, et al. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(1): 478-485. |
32 | MITSUHARU CHISAKA H D. Effect of organic solvents on catalyst layer structure in polymer electrolyte membrane fuel cells[J]. Journal of the Electrochemical Society, 2009, 156(1): B22-B26. |
33 | YU H, ROLLER J M, MUSTAIN W E, et al. Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology[J]. Journal of Power Sources, 2015, 283: 84-94. |
34 | BARICCI A, BONANOMI M, YU H, et al. Modelling analysis of low platinum polymer fuel cell degradation under voltage cycling: gradient catalyst layers with improved durability[J]. Journal of Power Sources, 2018, 405: 89-100. |
35 | SANCHEZ D G, RUIU T, BISWAS I, et al. Local impact of humidification on degradation in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2017, 352: 42-55. |
36 | TAYLOR A D, KIM E Y, HUMES V P, et al. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells[J]. Journal of Power Sources, 2007, 171(1): 101-106. |
37 | SU H N, ZENG Q, LIAO S J, et al. High performance membrane electrode assembly with ultra-low platinum loading prepared by a novel multi catalyst layer technique[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10430-10436. |
38 | TOWNE S, VISWANATHAN V, HOLBERY J, et al. Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology[J]. Journal of Power Sources, 2007, 171(2): 575-584. |
39 | SHUKLA S, DOMICAN K, KARAN K, et al. Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing[J]. Electrochimica Acta, 2015, 156: 289-300. |
40 | KIM S M, AHN C Y, CHO Y H, et al. High-performance fuel cell with stretched catalyst-coated membrane: one-step formation of cracked electrode[J]. Scientific Reports, 2016, 6: 26503. |
41 | SUNG C C, LIU C Y, CHENG C C J. Performance improvement by a glue-functioned Nafion layer coating on gas diffusion electrodes in PEM fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11700-11705. |
42 | MURATA S, IMANISHI M, HASEGAWA S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 253: 104-113. |
43 | 潘牧,官树猛,谭金婷. 一种改进质子交换膜燃料电池性能的催化层的制备方法: CN 109860636A[P]. 2019- 06-07. |
PAN Mu, GUAN Shumeng, TAN Jinting, et al. Preparation method of catalyst layer for improving performance of proton exchange membrane fuel cell: CN109860636A[P]. 2019-06-07. | |
44 | WANG L, ADVANI S G, PRASAD A K. Membrane electrode assembly with enhanced membrane/electrode interface for proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2013, 117(2): 945-948. |
45 | LEE D H, JO W, YUK S, et al. In-plane channel-structured catalyst layer for polymer electrolyte membrane fuel cells[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4682-4688. |
46 | JAO T C, JUNG G B, KUO S C, et al. Degradation mechanism study of PTFE/Nafion membrane in MEA utilizing an accelerated degradation technique[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13623-13630. |
47 | PARK J, WANG L, ADVANI S G, et al. Durability analysis of nafion/hydrophilic pretreated PTFE membranes for PEMFCs[J]. Journal of the Electrochemical Society, 2012, 159(12): F864-F870. |
48 | WU B, ZHAO M, SHI W, et al. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14381-14390. |
49 | KOH J K, JEON Y, CHO Y I, et al. A facile preparation method of surface patterned polymer electrolyte membranes for fuel cell applications[J]. Journal of Materials Chemistry A, 2014, 2(23): 8652-8659. |
50 | CHI W S, JEON Y, PARK S J, et al. Fabrication of surface-patterned membranes by means of a ZnO nanorod templating method for polymer electrolyte membrane fuel-cell applications[J]. ChemPlusChem, 2014, 79(8): 1109-1115. |
51 | JANG S, KIM M, KANG Y S, et al. Facile multiscale patterning by creep-assisted sequential imprinting and fuel cell application[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11459-65. |
52 | BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257. |
53 | KIM S M, KANG Y S, AHN C, et al. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2016, 317: 19-24. |
54 | LEU H J, CHIU K F, LIN C Y. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell[J]. Applied Energy, 2013, 112: 1126-1130. |
55 | AIZAWA M, GYOTEN H. Effect of micro-patterned membranes on the cathode performances for PEM fuel cells under low humidity[J]. Journal of the Electrochemical Society, 2013, 160(4): F417-F428. |
56 | CHEN M, WANG M, YANG Z, et al. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell[J]. Electrochimica Acta, 2018, 263: 201-208. |
57 | JEON Y, KIM D J, KOH J K, et al. Interface-designed membranes with shape-controlled patterns for high-performance polymer electrolyte membrane fuel cells[J]. Scientific Reports, 2015, 5: 16394. |
58 | YANG C, HAN N, WANG Y, et al. A novel approach to fabricate membrane electrode assembly by directly coating the Nafion ionomer on catalyst layers for proton-exchange membrane fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9803-9812. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[12] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[13] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |