Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 291-300.DOI: 10.16085/j.issn.1000-6613.2021-0239
• Materials science and technology • Previous Articles Next Articles
HU Huimin1,2(), FANG Xiaofeng1,2, LOU Mengmeng1,2, LIU Shuai1,2, XU Chenye1,2, LI Fang1,2()
Received:
2021-01-31
Revised:
2021-03-04
Online:
2021-11-09
Published:
2021-10-25
Contact:
LI Fang
胡慧敏1,2(), 方小峰1,2, 娄蒙蒙1,2, 刘帅1,2, 徐晨烨1,2, 李方1,2()
通讯作者:
李方
作者简介:
胡慧敏(1996—),女,硕士研究生,研究方向为膜分离与废水处理。E-mail:基金资助:
CLC Number:
HU Huimin, FANG Xiaofeng, LOU Mengmeng, LIU Shuai, XU Chenye, LI Fang. Research process on performance regulation and mass transfer mechanism of graphene oxide separation membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 291-300.
胡慧敏, 方小峰, 娄蒙蒙, 刘帅, 徐晨烨, 李方. 氧化石墨烯分离膜的性能调控及其传质机理研究进展[J]. 化工进展, 2021, 40(S1): 291-300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0239
插层材料 | 截留物 | 插层后水通量/L·m-2·h-1·bar-1 | 压力/MPa | 插层后水通量/L·m-2·h-1·bar-1 | 插层前截留率/% | 插层前截留率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PAMAM | NaCl | 0.1 | — | 30 | <60 | >99.99 | [ |
CNT | MO | 0.5~0.9 | 3.82 | 8.69 | 98.5 | 96.1 | [ |
SiO2 | MB | 0.3 | 1.46 | 1.67 | 78 | 79 | [ |
SiO2 | MB | 0.09 | 7.4 | 31.8 | 99.7 | 99.3 | [ |
SiO2/MXene | RhB | 0.1 | — | 74.8 | — | 99.3 | [ |
TiO2/Ag+ | MgSO4 | 0.7 | 20 | 52 | 80 | 83 | [ |
Ag+ | RhB | — | — | 21.8 | — | 99.5 | [ |
ZnO | BSA | 0.1 | 120 | 170.13 | 91 | 92 | [ |
PGS | C6H34 | 0.05 | 100 | 1867 | — | 99.9 | [ |
K+ | Mg2+ | 0.1 | — | — | — | 98.84 | [ |
Ca2+ | Mg2+ | 0.1 | — | 12.26 | — | 96.26 | [ |
插层材料 | 截留物 | 插层后水通量/L·m-2·h-1·bar-1 | 压力/MPa | 插层后水通量/L·m-2·h-1·bar-1 | 插层前截留率/% | 插层前截留率/% | 参考文献 |
---|---|---|---|---|---|---|---|
PAMAM | NaCl | 0.1 | — | 30 | <60 | >99.99 | [ |
CNT | MO | 0.5~0.9 | 3.82 | 8.69 | 98.5 | 96.1 | [ |
SiO2 | MB | 0.3 | 1.46 | 1.67 | 78 | 79 | [ |
SiO2 | MB | 0.09 | 7.4 | 31.8 | 99.7 | 99.3 | [ |
SiO2/MXene | RhB | 0.1 | — | 74.8 | — | 99.3 | [ |
TiO2/Ag+ | MgSO4 | 0.7 | 20 | 52 | 80 | 83 | [ |
Ag+ | RhB | — | — | 21.8 | — | 99.5 | [ |
ZnO | BSA | 0.1 | 120 | 170.13 | 91 | 92 | [ |
PGS | C6H34 | 0.05 | 100 | 1867 | — | 99.9 | [ |
K+ | Mg2+ | 0.1 | — | — | — | 98.84 | [ |
Ca2+ | Mg2+ | 0.1 | — | 12.26 | — | 96.26 | [ |
杂化材料 | 截留物 | 压力 /bar | 纯水通量 /L·m-2·h-1·bar-1 | 截留率/% | 参考 文献 |
---|---|---|---|---|---|
HKUST-1 | BSA | 1.5 | 122.34 | >90 | [ |
HKUST-1 | NaCl | 1 | 115200 | 100 | [ |
COFs-TpAD | RB | 1 | 596 | 98 | [ |
COFs-CTF5 | NaCl | 1 | 226.3 | 95.49 | [ |
COFs-TpPa | MB | 1 | 166.8 | 97.05 | [ |
MoS2 | MB | 1 | 159.6 | 96.3 | [ |
MWCNT | BSA | 1 | 125.6 | 85.01 | [ |
BN | MB | 20.68 | 4.15 | >99.5 | [ |
MXene | NR | 1 | 71.9 | >99.5 | [ |
MXene-Ti3C2Tx | NaCl | 4.89 | 0.05 | 98.6 | [ |
杂化材料 | 截留物 | 压力 /bar | 纯水通量 /L·m-2·h-1·bar-1 | 截留率/% | 参考 文献 |
---|---|---|---|---|---|
HKUST-1 | BSA | 1.5 | 122.34 | >90 | [ |
HKUST-1 | NaCl | 1 | 115200 | 100 | [ |
COFs-TpAD | RB | 1 | 596 | 98 | [ |
COFs-CTF5 | NaCl | 1 | 226.3 | 95.49 | [ |
COFs-TpPa | MB | 1 | 166.8 | 97.05 | [ |
MoS2 | MB | 1 | 159.6 | 96.3 | [ |
MWCNT | BSA | 1 | 125.6 | 85.01 | [ |
BN | MB | 20.68 | 4.15 | >99.5 | [ |
MXene | NR | 1 | 71.9 | >99.5 | [ |
MXene-Ti3C2Tx | NaCl | 4.89 | 0.05 | 98.6 | [ |
1 | ZHANG Y, WU B, XU H, et al. Nanomaterials-enabled water and wastewater treatment[J]. NanoImpact, 2016, 3/4: 22-39. |
2 | BONE S E, STEINRUECK H G, TONEY M F. Advanced characterization in clean water technologies[J]. Joule, 2020, 4(8): 1637-1659. |
3 | WANG L, WANG Y, WU L, et al. Fabrication, properties, performances, and separation application of polymeric pervaporation membranes: a review[J]. Polymers (Basel), 2020, 12(7): 1466. |
4 | SAYED E T, SHEHATA N, ABDELKAREEM M A, et al. Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment[J]. Science of the Total Environment, 2020, 748: 141046. |
5 | WANG E N, KARNIK R. Water desalination: graphene cleans up water [J]. Nat Nanotechnol, 2012, 7(9): 552-554. |
6 | ANG E Y M, NG T Y, YEO J, et al. Investigations on different two-dimensional materials as slit membranes for enhanced desalination[J]. Journal of Membrane Science, 2020, 598: 117653. |
7 | LI H, XUE S, SHANG Y, et al. Research and application progress based on the interfacial properties of graphene oxide[J]. Advanced Materials Interfaces, 2020, 7(21): 2000881. |
8 | TSOU C H, AN Q F, LO S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
9 | SU P, WANG F, LI Z, et al. Graphene oxide membranes: controlling their transport pathways[J]. Journal of Materials Chemistry A, 2020, 8(31): 15319-15340. |
10 | ABDELKADER B A, ANTAR M A, LAOUI T, et al. Development of graphene oxide-based membrane as a pretreatment for thermal seawater desalination[J]. Desalination, 2019, 465: 13-24. |
11 | KIM J H, CHOI Y, KANG J, et al. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating[J]. Journal of Membrane Science, 2020, 612: 118454. |
12 | KANG H, WANG W, SHI J, et al. Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly[J]. Applied Surface Science, 2019, 465: 1103-1106. |
13 | DENG J, YOU Y, BUSTAMANTE H, et al. Mechanism of water transport in graphene oxide laminates[J]. Chemical Science, 2017, 8(3): 1701-1704. |
14 | KANG Y, QIU R, JIAN M, et al. The role of nanowrinkles in mass transport across graphene-based membranes[J]. Advanced Functional Materials, 2020, 30(32): 2003159. |
15 | WANG C B, FENG Y Y, CHEN J X, et al. Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110: 153-162. |
16 | HALAKOO E, FENG X. Layer-by-layer assembled membranes from graphene oxide and polyethyleneimine for ethanol and isopropanol dehydration[J]. Chemical Engineering Science, 2020, 216: 115488. |
17 | KANDJOU V, PEREZ-MAS A M, ACEVEDO B, et al. Enhanced covalent p-phenylenediamine crosslinked graphene oxide membranes: towards superior contaminant removal from wastewaters and improved membrane reusability[J]. Journal of Hazardous Materials, 2019, 380: 120840. |
18 | LOU Y, TAN F J, ZENG R, et al. Preparation of cross-linked graphene oxide on polyethersulfone membrane for pharmaceuticals and personal care products removal[J]. Polymers (Basel), 2020, 12(9): 1921. |
19 | XI Y H, LIU Z, LIAO Q C, et al. Effect of oxidized-group-supported lamellar distance on stability of graphene-based membranes in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9439-9447. |
20 | QIAN Y, ZHOU C, HUANG A. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J]. Carbon, 2018, 136: 28-37. |
21 | THEBO K H, QIAN X, ZHANG Q, et al. Highly stable graphene-oxide-based membranes with superior permeability[J]. Nature Communications, 2018, 9: 1486. |
22 | YANG J, GONG D, LI G, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): 1705775. |
23 | RAJESH S, BOSE A B. Development of graphene oxide framework membranes via the “from” and “to” cross-Linking approach for ion-selective separations[J]. American Chemical Society Applied Materials & Interfaces, 2019, 11(31): 27706-27716. |
24 | SONG Y, LI R, PAN F, et al. Ultrapermeable graphene oxide membranes with tunable interlayer distances via vein-like supramolecular dendrimers[J]. Journal of Materials Chemistry A, 2019, 7(31): 18642-18652. |
25 | CHUAH C Y, NIE L, LEE J M, et al. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance[J]. Separation and Purification Technology, 2020, 246: 116933. |
26 | ZHANG P, GONG J L, ZENG G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chemical Engineering Journal, 2017, 322: 657-666. |
27 | HAO W, TONG Z, LIU X, et al. Optimizing nanostrands-inserted graphene oxide membrane with polyelectrolyte protective layer for enhanced ethanol pervaporation dehydration[J]. Separation and Purification Technology, 2020, 251: 117322. |
28 | BANG K R, BAHAMON D, VEGA L F, et al. Design of sub-nanochannels between graphene oxide sheets via crown ether intercalation to selectively regulate cation permeation[J]. Advanced Materials Interfaces, 2020, 7(8): 1901876. |
29 | GOGOI A, ANKI REDDY K, MONDAL P K. Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes[J]. Nanoscale, 2020, 12(13): 7273-7283. |
30 | ZHANG Q, CHEN S, FAN X, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B: Environmental, 2018, 224:204-213. |
31 | GOH K, JIANG W C, KARAHAN H E, et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability[J]. Advanced Functional Materials, 2015, 25(47): 7348-7359. |
32 | LIU T, TIAN L, GRAHAM N, et al. Regulating the interlayer spacing of graphene oxide membranes and enhancing their stability by use of PACl[J]. Environ Science & Technology, 2019, 53(20): 11949-11959. |
33 | HAN Y, JIANG Y, GAO C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. American Chemical Society Applied Material & Interfaces, 2015, 7(15): 8147-8155. |
34 | YAN X, HUO L, MA C, et al. Layer-by-layer assembly of graphene oxide-TiO2 membranes for enhanced photocatalytic and self-cleaning performance[J]. Process Safety and Environmental Protection, 2019, 130: 257-264. |
35 | LIU Y, YU Z, PENG Y, et al. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane[J]. Chemical Physics Letters, 2020, 749: 137422. |
36 | HAN R, WU P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene[J]. Journal of Materials Chemistry A, 2019, 7(11): 6475-6481. |
37 | ABADIKHAH H, NADERI KALALI E, KHODI S, et al. Multifunctional thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. American Chemical Society Applied Material & Interfaces, 2019, 11(26): 23535-23545. |
38 | LIU G F, HUANG L J, WANG Y X, et al. Preparation of a graphene/silver hybrid membrane as a new nanofiltration membrane[J]. RSC Advance, 2017, 7(77): 49159-49165. |
39 | AYYARU S, DINH T T L, AHN Y H. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle[J]. Chemosphere, 2020, 241: 125068. |
40 | ZHAO X, SU Y, LIU Y, et al. Free-standing graphene oxide-palygorskite nanohybrid membrane for oil/water separation[J]. American Chemical Society Applied Material & Interfaces, 2016, 8(12): 8247-8256. |
41 | GHAFFAR A, ZHANG L, ZHU X, et al. Scalable graphene oxide membranes with tunable water channels and stability for ion rejection[J]. Environmental Science—Nano, 2019, 6(3): 904-915. |
42 | KIM J, LEE S E, SEO S, et al. Near-complete blocking of multivalent anions in graphene oxide membranes with tunable interlayer spacing from 3.7 to 8.0 angstrom[J]. Journal of Membrane Science, 2019, 592: 117394. |
43 | MOUSAVI S M, LOW F W, HASHEMI S A, et al. Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy[J]. RSC Advances, 2020, 10(22): 12851-12863. |
44 | FAN X, CAI C, GAO J, et al. Hydrothermal reduced graphene oxide membranes for dyes removing[J]. Separation and Purification Technology, 2020, 241: 116730. |
45 | LI Y, YUAN S, XIA Y, et al. Mild annealing reduced graphene oxide membrane for nanofiltration[J]. Journal of Membrane Science, 2020, 601: 117900. |
46 | 郭建强, 李炯利, 梁佳丰, 等. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35. |
GUO Jianqiang, LI Jiongli, LIANG Jiafeng, et al. Research progress in methods and mechanisms of chemical reduction graphene oxide[J]. Journal of Materials Engineering, 2020, 48(7): 24-35. | |
47 | CHEN X, FENG Z, GOHIL J, et al. Reduced holey graphene oxide membranes for desalination with improved water permeance[J]. American Chemical Society Applied Material & Interfaces, 2020, 12(1): 1387-1394. |
48 | WANG Z, MA C, SINQUEFIELD S A, et al. High-performance graphene oxide nanofiltration membranes for black liquor concentration[J]. American Chemical Society Sustainable Chemistry & Engineering, 2019, 7(17): 14915-14923. |
49 | GUPTA P, RAJKUMAR S, GOPINATH P. Development of sunlight-driven reduced graphene oxide (rGO)/CeO₂-CuO nanofibrous photocatalyst for efficient removal of organic dyes[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7480-7494. |
50 | LI Z, XING Y, FAN X, et al. rGO/protonated g-C3N4 hybrid membranes fabricated by photocatalytic reduction for the enhanced water desalination[J]. Desalination, 2018, 443: 130-136. |
51 | ZHU Y W, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541. |
52 | BUELKE C, ALSHAMI A, CASLER J, et al. Evaluating graphene oxide and holey graphene oxide membrane performance for water purification[J]. Journal of Membrane Science, 2019, 588: 117195. |
53 | LI Y, ZHAO W, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide membrane for desalination[J]. Environmental Science & Technology, 2019, 53(14): 8314-8323. |
54 | LACEY S D, KIRSCH D J, LI Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials, 2018, 30(12): 1705651. |
55 | KANG J, CHOI Y, KIM J H, et al. Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration [J]. Journal of Membrane Science, 2021, 618: 118635. |
56 | LIU G, JIN W, XU N. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397. |
57 | YANG S, ZOU Q, WANG T, et al. Effects of GO and MOF@GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane[J]. Journal of Membrane Science, 2019, 569: 48-59. |
58 | DAHANAYAKA M, BABICHEVA R, CHEN Z, et al. Atomistic simulation study of GO/HKUST-1 MOF membranes for seawater desalination via pervaporation[J]. Applied Surface Science, 2020, 503: 144198. |
59 | YAO J, LIU C, LIU X, et al. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane[J]. Journal of Membrane Science, 2020, 601: 117864. |
60 | KHAN N A, YUAN J, WU H, et al. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux[J]. American Chemical Society Applied Material & Interfaces, 2019, 11(32): 28978-28986 |
61 | KONG G, PANG J, TANG Y, et al. Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing[J]. Journal of Materials Chemistry A, 2019, 7(42): 24301-24310. |
62 | SUN J, CHEN Y, HU C, et al. Modulation of cation trans-membrane transport in GO-MoS2 membranes through simultaneous control of interlayer spacing and ion-nanochannel interactions[J]. Chemosphere, 2019, 222:156-164. |
63 | KIM T I, KWON B, YOON J, et al. Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films[J]. American Chemical Society Applied Material & Interfaces, 2017, 9(9): 7908-7917. |
64 | CHENG P, CHEN Y, GU Y H, et al. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving[J]. Journal of Membrane Science, 2019, 591: 117308. |
65 | LEE D K, KIM S J, KIM Y J, et al. Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties[J]. Advanced Materials Interfaces, 2019, 6(7): 1801992. |
66 | QU L, ZHU G, JI J, et al. Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants[J]. American Chemical Society Applied Material & Interfaces, 2018, 10(49): 42427-42435. |
67 | YUAN X T, XU C X, GENG H Z, et al. Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection[J]. Journal of Hazardous Materials, 2020, 384: 120978. |
68 | LIN H, MEHRA N, LI Y, et al. Graphite oxide/boron nitride hybrid membranes: the role of cross-plane laminar bonding for a durable membrane with large water flux and high rejection rate[J]. Journal of Membrane Science, 2020, 593: 117401. |
69 | LIU T, LIU X, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification[J]. Journal of Membrane Science, 2020, 593(7): 117431. |
70 | GAO H, CHEN W, XU C, et al. Two-dimensional Ti3C2Tx MXene/GO hybrid membranes for highly efficient osmotic power generation[J]. Environmental Science & Technology, 2020, 54(5): 2931-2940. |
71 | LU Z, WEI Y, DENG J, et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion[J]. American Chemical Society Nano, 2020, 13: 10535-10544. |
72 | NICOLAI A, SUMPTER B G, MEUNIER V. Tunable water desalination across graphene oxide framework membranes[J]. Physical Chemistry Chemical Physics, 2014, 16(18): 8646-8654. |
73 | 余炎子. 石墨烯埃米通道离子输运的力学机理研究[D]. 合肥: 中国科学技术大学, 2019. |
YU Y Z. Mechanical mechanism of ion transport through angstrom-scale graphene channels[D]. Hefei: University of Science and Technology of China, 2019. | |
74 | BOUKHVALOV D W, KATSNELSON M I, SON Y W. Origin of anomalous water permeation through graphene oxide membrane[J]. Nano Letters, 2013, 13(8): 3930-3935. |
75 | LEE H G, JIN D, SHIM W, et al. Synergistic effects of crystal structure and surface chemistry of stacked graphene-oxide membranes on the water-permeation mechanism[J]. Desalination, 2020, 492: 114603. |
76 | NIE L, GOH K, WANG Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): 9184. |
77 | ESFANDIAR A, RADHA B, WANG F C, et al. Size effect In Ion transport through angstrom-scale silts[J]. Science, 2017, 358(6362): 511-513. |
78 | CORRY B. Mechanisms of selective ion transport and salt rejection in carbon nanostructures[J]. MRS Bulletin, 2017, 42(4): 306-310. |
79 | PHAM V H, CUONG T V, HUR S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7): 1945-1951. |
80 | ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. |
81 | CHEN C, JIA L, LI J, et al. Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation[J]. Desalination, 2020, 491: 114560. |
82 | 汪国睿. 石墨烯界面力学行为的表征与调控研究[D].合肥: 中国科学技术大学, 2017. |
WANG G R. Study on characterization and modification of graphene-based interfacial mechanical behavior[D]. Hefei: University of Science and Technology of China, 2017. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[4] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[9] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[10] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[11] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[12] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[13] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[14] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[15] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |