Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4782-4790.DOI: 10.16085/j.issn.1000-6613.2021-0452
Previous Articles Next Articles
LIU Jiahui1(), SUN Dao’an2(), DU Yongmei2, LI Chunying2, LIU Zhaotie1, LYU Jian2()
Received:
2021-03-07
Revised:
2021-05-31
Online:
2021-09-13
Published:
2021-09-05
Contact:
SUN Dao’an,LYU Jian
刘嘉辉1(), 孙道安2(), 杜咏梅2, 李春迎2, 刘昭铁1, 吕剑2()
通讯作者:
孙道安,吕剑
作者简介:
刘嘉辉(1997—),男,硕士研究生,研究方向为碳氢化合物水蒸汽重整制氢。E-mail:基金资助:
CLC Number:
LIU Jiahui, SUN Dao’an, DU Yongmei, LI Chunying, LIU Zhaotie, LYU Jian. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790.
刘嘉辉, 孙道安, 杜咏梅, 李春迎, 刘昭铁, 吕剑. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0452
反应物 | 密度(20℃)/g·cm-3 | 理论产氢量/mmol·mL-1 |
---|---|---|
乙酸 | 1.050 | 70.0 |
二甲醚 | 0.666 | 86.7 |
乙醇 | 0.789 | 102.8 |
正十二烷 | 0.750 | 162.9 |
苯 | 0.880 | 169.0 |
甲苯 | 0.866 | 169.2 |
萘 | 1.145 | 214.4 |
反应物 | 密度(20℃)/g·cm-3 | 理论产氢量/mmol·mL-1 |
---|---|---|
乙酸 | 1.050 | 70.0 |
二甲醚 | 0.666 | 86.7 |
乙醇 | 0.789 | 102.8 |
正十二烷 | 0.750 | 162.9 |
苯 | 0.880 | 169.0 |
甲苯 | 0.866 | 169.2 |
萘 | 1.145 | 214.4 |
制氢方式 | 实验室实际产氢量/kg H2·(kg 原料)-1 | 制氢成本/CNY·kg-1 |
---|---|---|
甲烷重整 | 0.313 | 14① |
甲苯重整② | 0.196 | 20~25③ |
碱式电解水 | — | 40 |
制氢方式 | 实验室实际产氢量/kg H2·(kg 原料)-1 | 制氢成本/CNY·kg-1 |
---|---|---|
甲烷重整 | 0.313 | 14① |
甲苯重整② | 0.196 | 20~25③ |
碱式电解水 | — | 40 |
反应物 | 催化剂 | 反应条件① | 积炭量② | 芳烃转化率/% | H2收率③/% | 文献 |
---|---|---|---|---|---|---|
苯 | NiO/泡沫陶瓷 | 750℃,WHSV=5.6h-1,S/C=2.0 | — | 85.5 | 59 | [ |
甲苯 | Ni/CGA-1d | 800℃,WHSV=2.6h-1,S/C=2.0 | 0.034gcoke·h·gcat-1 | 91.5 | 58.2 | [ |
甲苯 | Ni/MgO-Al2O3 | 650~800℃,WHSV=5.2h-1,S/C=1.7 | 2.55~4.86mg·(g Cfeed)-1 | 95.4 | 69 | [ |
甲苯 | Ni/La0.7Sr0.3AlO3-δ | 600℃,WHSV=1.84h-1,S/C=2.0 | 9.3mg·gcat-1 | 53.0 | 49.9 | [ |
甲苯 | Ni-K/La0.7Sr0.3AlO3-δ | 650℃,WHSV=3.73h-1,S/C=2.0 | 7.3mg·gcat-1 | 100 | 79 | [ |
甲苯 | Ni-Fe/zeolite | 800℃,WHSV=1.0~2.3h-1,S/C=2.0 | — | 74 | 65 | [ |
萘 | Ni/Ce0.75Zr0.25-xMnxO2 | 700℃,GHSV=20000h-1,S/C=2.0 | (1.1±0.3)mg·gcat-1 | 100(120min) | — | [ |
反应物 | 催化剂 | 反应条件① | 积炭量② | 芳烃转化率/% | H2收率③/% | 文献 |
---|---|---|---|---|---|---|
苯 | NiO/泡沫陶瓷 | 750℃,WHSV=5.6h-1,S/C=2.0 | — | 85.5 | 59 | [ |
甲苯 | Ni/CGA-1d | 800℃,WHSV=2.6h-1,S/C=2.0 | 0.034gcoke·h·gcat-1 | 91.5 | 58.2 | [ |
甲苯 | Ni/MgO-Al2O3 | 650~800℃,WHSV=5.2h-1,S/C=1.7 | 2.55~4.86mg·(g Cfeed)-1 | 95.4 | 69 | [ |
甲苯 | Ni/La0.7Sr0.3AlO3-δ | 600℃,WHSV=1.84h-1,S/C=2.0 | 9.3mg·gcat-1 | 53.0 | 49.9 | [ |
甲苯 | Ni-K/La0.7Sr0.3AlO3-δ | 650℃,WHSV=3.73h-1,S/C=2.0 | 7.3mg·gcat-1 | 100 | 79 | [ |
甲苯 | Ni-Fe/zeolite | 800℃,WHSV=1.0~2.3h-1,S/C=2.0 | — | 74 | 65 | [ |
萘 | Ni/Ce0.75Zr0.25-xMnxO2 | 700℃,GHSV=20000h-1,S/C=2.0 | (1.1±0.3)mg·gcat-1 | 100(120min) | — | [ |
1 | 王治斌, 孙来芝, 陈雷, 等. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163. |
WANG Z B, ZHANG L Z, CHEN L, et al. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163. | |
2 | 乔韦军, 肖国鹏, 张磊, 等. 甲醇水蒸气重整制氢CuO/La1-xCexCrO3催化剂[J]. 燃料化学学报, 2021, 49(2): 205-210. |
QIAO Weijun, XIAO Guopeng, ZHANG Lei, et al. Catalytic performance of CuO/La1-xCexCrO3 in the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 205-210. | |
3 | 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J]. 材料研究与应用, 2019, 13(4): 339-346. |
LIU Taikai, DENG Chunming, ZHANG Yapeng. Development of hydrogen generation via water electrolysis Ⅰ: Alkaline water electrolysis[J]. Materials Research and Application, 2019, 13(4): 339-346. | |
4 | SARıOĞLAN A. Tar removal on dolomite and steam reforming catalyst: benzene, toluene and xylene reforming[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8133-8142. |
5 | QIAN K Z, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel, 2017, 187: 128-136. |
6 | GAO N B, WANG X, LI A M, et al. Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification[J]. Fuel Processing Technology, 2016, 148: 380-387. |
7 | LU M, XIONG Z H, FANG K J, et al. Steam reforming of toluene over nickel catalysts supported on coal gangue ash[J]. Renewable Energy, 2020, 160: 385-395. |
8 | JIAO Y, ZHANG J, DU Y M, et al. Hydrogen-rich syngas production by toluene reforming in a microchannel reactor coated with Ni/MgO-Al2O3 multifunctional catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19794-19802. |
9 | TAKISE K, IMORI M, MUKAI D, et al. Effect of catalyst structure on steam reforming of toluene over Ni/La0.7Sr0.3AlO3-δ catalyst[J]. Applied Catalysis A: General, 2015, 489: 155-161. |
10 | ZHANG Z H, OU Z L, QIN C L, et al. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts[J]. Fuel, 2019, 257: 116032. |
11 | AHMED T, XIU S N, WANG L J, et al. Investigation of Ni/Fe/Mg zeolite-supported catalysts in steam reforming of tar using simulated-toluene as model compound[J]. Fuel, 2018, 211: 566-571. |
12 | BAMPENRAT A, MEEYOO V, KITIYANAN B, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
13 | DU Z Y, ZHANG Z H, XU C, et al. Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3111-3119. |
14 | ZOU X H, CHEN T H, ZHANG P, et al. High catalytic performance of Fe-Ni/palygorskite in the steam reforming of toluene for hydrogen production[J]. Applied Energy, 2018, 226: 827-837. |
15 | NORINAGA K, SAKURAI Y, SATO R, et al. Numerical simulation of thermal conversion of aromatic hydrocarbons in the presence of hydrogen and steam using a detailed chemical kinetic model[J]. Chemical Engineering Journal, 2011, 178: 282-290. |
16 | KAISALO N, SIMELL P, LEHTONEN J. Benzene steam reforming kinetics in biomass gasification gas cleaning[J]. Fuel, 2016, 182: 696-703. |
17 | OH G, PARK S Y, SEO M W, et al. Ni/Ru-Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar[J]. Renewable Energy, 2016, 86: 841-847. |
18 | LU M, XIONG Z H, FANG K J, et al. Effect of promoters on steam reforming of toluene over a Ni-based catalyst supported on coal gangue ash[J]. ACS Omega, 2020, 5(41): 26335-26346. |
19 | MEI D H, LEBARBIER V M, ROUSSEAU R, et al. Comparative investigation of benzene steam reforming over spinel supported Rh and Ir catalysts[J]. ACS Catalysis, 2013, 3(6): 1133-1143. |
20 | GHADAMI YAZDI M, MOUD P H, MARKS K, et al. Naphthalene on Ni(111): experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22199-22207. |
21 | DE CASTRO T P, SILVEIRA E B, RABELO-NETO R C, et al. Study of the performance of Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts for steam reforming of toluene, methane and mixtures[J]. Catalysis Today, 2018, 299: 251-262. |
22 | ZHOU S Y, CHEN Z Z, GONG H J, et al. Low-temperature catalytic steam reforming of toluene as a biomass tar model compound over three-dimensional ordered macroporous Ni-Pt/Ce1-xZrxO2 catalysts[J]. Applied Catalysis A: General, 2020, 607: 117859. |
23 | MUKAI D, MURAI Y, HIGO T, et al. Effect of Pt addition to Ni/La0.7Sr0.3AlO3-δ catalyst on steam reforming of toluene for hydrogen production[J]. Applied Catalysis A: General, 2014, 471: 157-164. |
24 | TAKISE K, HIGO T, MUKAI D, et al. Highly active and stable Co/La0.7Sr0.3AlO3-δ catalyst for steam reforming of toluene[J]. Catalysis Today, 2016, 265: 111-117. |
25 | SUGIURA Y, MUKAI D, MURAI Y, et al. Oxidation resistance of Ni/La0.7Sr0.3AlO3-δ catalyst for steam reforming of model aromatic hydrocarbon[J]. International Journal of Hydrogen Energy, 2013, 38(19): 7822-7829. |
26 | FURUSAWA T, SAITO K, KORI Y, et al. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production[J]. Fuel, 2013, 103: 111-121. |
27 | 赵效勇, 闫常峰, 张亮. Ni/CeO2-ZrO2@SiO2核壳结构型催化剂对甲苯催化重整研究[J]. 新能源进展, 2017, 5(4): 272-278. |
ZHAO Xiaoyong, YAN Changfeng, ZHANG Liang. Catalytic activity of Ni/CeO2-ZrO2@SiO2 core-shell structure for steam reforming of toluene[J]. Advances in New and Renewable Energy, 2017, 5(4): 272-278. | |
28 | BELBESSAI S, ACHOURI I E, BENYOUSSEF E H, et al. Toluene steam reforming using nickel based catalysts made from mining residues[J]. Catalysis Today, 2021, 365: 111-121. |
29 | WANG X B, YANG S Q, XU C, et al. Effect of boron doping on the performance of Ni/biochar catalysts for steam reforming of toluene as a tar model compound[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105033. |
30 | HU S, HE L M, WANG Y, et al. Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe-Ni/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17967-17975. |
31 | 何立模, 胡松, 汪一, 等. 改性镍基催化剂催化甲苯重整与积炭特性研究[J]. 工程热物理学报, 2016, 37(5): 1093-1099. |
HE Limo, HU Song, WANG Yi, et al. Catalytic performance and coke characterization over modified Ni-based catalysts for steam reforming of toluene[J]. Journal of Engineering Thermophysics, 2016, 37(5): 1093-1099. | |
32 | MENG J G, ZHAO Z L, WANG X B, et al. Steam reforming and carbon deposition evaluation of phenol and naphthalene used as tar model compounds over Ni and Fe olivine-supported catalysts[J]. Journal of the Energy Institute, 2019, 92(6): 1765-1778. |
33 | FERELLA F, STOEHR J, MICHELIS I D, et al. Zirconia and alumina based catalysts for steam reforming of naphthalene[J]. Fuel, 2013, 105: 614-629. |
34 | 陶君, 陆强, 冉泽朋, 等. Ni-CeO2/γ-Al2O3催化甲苯水蒸气重整的实验研究[J]. 可再生能源, 2014, 32(10): 1539-1543. |
TAO Jun, LU Qiang, RAN Zepeng, et al. Experimental research on catalytic steam reforming of toluene using Ni-CeO2/γ-Al2O3 catalysts[J]. Renewable Energy Resources, 2014, 32(10): 1539-1543. | |
35 | HE L M, HU S, JIANG L, et al. Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: roles of catalyst supports[J]. Fuel Processing Technology, 2018, 176: 7-14. |
36 | 卢雯, 孔猛, 杨琦, 等. 载体对镍基催化剂及其甲苯水蒸气重整性能的影响[J]. 化学反应工程与工艺, 2012, 28(3): 238-243. |
LU Wen, KONG Meng, YANG Qi, et al. Influence of support on catalytic behavior of Ni-based catalysts in steam reforming of toluene[J]. Chemical Reaction Engineering and Technology, 2012, 28(3): 238-243. | |
37 | SILVEIRA E B, RABELO-NETO R C, NORONHA F B. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts[J]. Catalysis Today, 2017, 289: 289-301. |
38 | ABOU RACHED J, HAYEK C EL, DAHDAH E, et al. Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12829-12840. |
39 | CLAUDE V, MAHY J G, GEENS J, et al. Synthesis of Ni/γ-Al2O3-SiO2 catalysts with different silicon precursors for the steam toluene reforming[J]. Microporous and Mesoporous Materials, 2019, 284: 304-315. |
40 | 刘晓刚, 魏波, 史芸菲, 等. La1-xLixMnO3钙钛矿催化剂同时消除NO和碳烟催化性能[J]. 化工学报, 2020, 71(3): 1053-1059. |
LIU Xiaogang, WEI Bo, SHI Yunfei, et al. Simultaneous removal of NO and soot over La1-xLixMnO3 perovskite catalysts[J]. CIESC Journal, 2020, 71(3): 1053-1059. | |
41 | MUKAI D, TOCHIYA S, MURAI Y, et al. Role of support lattice oxygen on steam reforming of toluene for hydrogen production over Ni/La0.7Sr0.3AlO3-δ catalyst[J]. Applied Catalysis A: General, 2013, 453: 60-70. |
42 | SEKINE Y, MUKAI D, MURAI Y, et al. Steam reforming of toluene over perovskite-supported Ni catalysts[J]. Applied Catalysis A: General, 2013, 451: 160-167. |
43 | LIU C L, CHEN D, CAO Y, et al. Catalytic steam reforming of in situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy, 2020, 161: 408-418. |
44 | TANG W, CAO J P, YANG F L, et al. Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar[J]. Energy Conversion and Management, 2020, 212: 112799. |
45 | BIZKARRA K, BARRIO V L, GARTZIA-RIVERO L, et al. Hydrogen production from a model bio-oil/bio-glycerol mixture through steam reforming using zeolite L supported catalysts[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1492-1504. |
46 | 冉泽朋, 陶君, 陆强, 等. Ni-CeO2/SBA-15电催化甲苯水蒸气重整的实验研究[J]. 新能源进展, 2014, 2(6): 407-412. |
RAN Zepeng, TAO Jun, LU Qiang, et al. Electric current enhanced catalytic steam reforming of toluene with Ni-CeO2/SBA-15 catalyst[J]. Advances in New and Renewable Energy, 2014, 2(6): 407-412. | |
47 | HIGO T, SAITO H, OGO S, et al. Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene[J]. Applied Catalysis A: General, 2017, 530: 125-131. |
48 | ASHOK J, KAWI S. Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems[J]. International Journal of Hydrogen Energy, 2013, 38(32): 13938-13949. |
49 | BAMPENRAT A, MEEYOO V, KITIYANAN B, et al. Naphthalene steam reforming over Mn-doped CeO2-ZrO2 supported nickel catalysts[J]. Applied Catalysis A: General, 2010, 373(1/2): 154-159. |
50 | HEO D H, LEE R, HWANG J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound[J]. Catalysis Today, 2016, 265: 95-102. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |