Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4791-4805.DOI: 10.16085/j.issn.1000-6613.2021-0503
Previous Articles Next Articles
LI Fangqin(), SUN Chenhao, REN Jianxing, WU Jiang, CHEN Linfeng, LI Kejun
Received:
2021-03-12
Revised:
2021-05-25
Online:
2021-09-13
Published:
2021-09-05
Contact:
LI Fangqin
通讯作者:
李芳芹
作者简介:
李芳芹(1976—),副教授,硕士生导师,研究方向为清洁煤燃烧技术及污染物控制。E-mail:基金资助:
CLC Number:
LI Fangqin, SUN Chenhao, REN Jianxing, WU Jiang, CHEN Linfeng, LI Kejun. Research progress of novel photocatalytic hydrogen production system with pollutants as electron donors[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4791-4805.
李芳芹, 孙辰豪, 任建兴, 吴江, 陈林峰, 李可君. 以污染物作为电子给体的新型光催化制氢体系的研究进展[J]. 化工进展, 2021, 40(9): 4791-4805.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0503
1 | MILLER Eric L, THOMPSON Simon T, RANDOLPH Katie, et al. US department of energy hydrogen and fuel cell technologies perspectives[J]. MRS Bulletin, 2020, 45: 57-64. |
2 | BONCIU F. The European Union hydrogen strategy as a significant step towards a circular economy[J]. Romanian Journal of European Affairs, 2020, 20(2): 36-48. |
3 | 丁振森, 王佳, 姚占辉, 等. 多视角下中国氢能与燃料电池电动汽车发展研究[J]. 中国汽车, 2020, 30(9): 32-37. |
DING Zhensen, WANG Jia, YAO Zhanhui, et al. Research on the development of hydrogen energy and fuel cell electric vehicles in China from different perspectives[J]. China Auto, 2020, 30(9): 32-37. | |
4 | 黄格省, 李锦山, 魏寿祥, 等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展, 2019, 38(12): 5217-5224. |
HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224. | |
5 | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
6 | 梁可心, 徐芸菲, 许佩瑶, 等. 复合TiO2纳米管材料光催化裂解水产氢研究进展[J]. 化工进展, 2017, 36(11): 4051-4056. |
LIANG Kexin, XU Yunfei, XU Peiyao, et al. Progress of photocatalytic water splitting for hydrogen production over TiO2 nanotube composite materials[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4051-4056. | |
7 | LI K X, ZENG Z X, YAN L S, et al. Fabrication of C/X-TiO2@C3N4 NTs (X = N, F, Cl) composites by using phenolic organic pollutants as raw materials and their visible-light photocatalytic performance in different photocatalytic systems[J]. Applied Catalysis B: Environmental, 2016, 187: 269-280. |
8 | PATSOURA A, KONDARIDES D I, VERYKIOS X E. Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen[J]. Catalysis Today, 2007, 124(3/4): 94-102. |
9 | KIM J, MONLLOR-SATOCA D, CHOI W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components[J]. Energy & Environmental Science, 2012, 5(6): 7647-7656. |
10 | SINGH R, DUTTA S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts[J]. Fuel, 2018, 220: 607-620. |
11 | KUMAR A, KHAN M, HE J H, et al. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: a critical review[J]. Water Research, 2020, 170: 115356. |
12 | 肖琳. 光催化污染物降解耦合光解水制氢[D]. 上海: 上海交通大学, 2008. |
XIAO Lin. Photocatalytic hydrogen production from water with simultaneous degration of pollutant[D]. Shanghai: Shanghai Jiaotong University, 2008. | |
13 | LI Y X, LYU G X, LI S B. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO2[J]. Applied Catalysis A: General, 2001, 214(2): 179-185. |
14 | 李越湘, 吕功煊, 李树本, 等. 污染物甲醛为电子给体Pt/TiO2光催化制氢[J]. 分子催化, 2002, 16(4): 241-246. |
LI Yuexiang, Gongxuan LYU, LI Shuben, et al. Photocatalytic hydrogen generation by pollutant formaldehyde as electron donor over Pt/TiO2[J]. Journal of Molecular Catalysis, 2002, 16(4): 241-246. | |
15 | 李越湘, 吕功煊, 李树本. Pt-TiO2光催化还原罗丹明B[J]. 分子催化, 2001, 15(4): 287-290. |
LI Yuexiang, Gongxuan LYU, LI Shuben. Photocatalytic reduction rhodamine B over Pt-TiO2[J]. Journal of Molecular Catalysis, 2001, 15(4): 287-290. | |
16 | 吴玉琪, 吕功煊, 李树本. Pt/TiO2光催化重整降解2-氯乙醇水溶液制氢[J]. 分子催化, 2004, 18(2): 125-130. |
WU Yuqi, Gongxuan LYU, LI Shuben. Hydrogen production by Pt/TiO2 photocatalytic reforming degradation of aqueous 2-chloroethanol[J]. Journal of Molecular Catalysis, 2004, 18(2): 125-130. | |
17 | LI M, LI Y X, PENG S Q, et al. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2[J]. Frontiers of Chemistry in China, 2009, 4(1): 32-38. |
18 | 尹忠环, 李越湘, 彭绍琴, 等. 污染物乙醇胺Pt/TiO2光催化制氢[J]. 分子催化, 2007, 21(2): 155-161. |
YIN Zhonghuan, LI Yuexiang, PENG Shaoqin, et al. Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/TiO2[J]. Journal of Molecular Catalysis, 2007, 21(2): 155-161. | |
19 | 吴玉琪, 吕功煊, 李树本. 无氧条件下Pt/TiO2光催化重整降解一乙醇胺水溶液制氢[J]. 物理化学学报, 2004, 20(7): 755-758. |
WU Yuqi, Gongxuan LYU, LI Shuben. Hydrogen production by Pt/TiO2 anaerobic photocatalytic reforming degradation of aqueous monoethanolamine[J]. Acta Physico-Chimica Sinica, 2004, 20(7): 755-758. | |
20 | LI Y X, XIE Y Z, PENG S Q, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2[J]. Chemosphere, 2006, 63(8): 1312-1318. |
21 | LI Y X, LYU G X, LI S B. Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy[J]. Chemosphere, 2003, 52(5): 843-850. |
22 | LI Y X, LYU G X, LI S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152(1/2/3): 219-228. |
23 | YUZAWA H, MORI T, ITOH H, et al. Reaction mechanism of ammonia decomposition to nitrogen and hydrogen over metal loaded titanium oxide photocatalyst[J]. The Journal of Physical Chemistry C, 2012, 116(6): 4126-4136. |
24 | NEMOTO J, GOKAN N, UENO H, et al. Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO2 nanoparticules in an aqueous solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2/3): 295-300. |
25 | KLAUSON D, BUDARNAJA O, CASTELLANOS BELTRAN I, et al. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons[J]. Environmental Technology, 2014, 35(17): 2237-2243. |
26 | KOZLOVA E A, VORONTSOV A V. Photocatalytic hydrogen evolution from aqueous solutions of organophosphorous compounds[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7337-7343. |
27 | HU X, HU X J, PENG Q Q, et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2[J]. Chemical Engineering Journal, 2020, 380: 122366. |
28 | CHEN J R, QIU F X, XU W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131-140. |
29 | RELI M, AMBROŽOVÁ N, ŠIHOR M, et al. Novel cerium doped titania catalysts for photocatalytic decomposition of ammonia[J]. Applied Catalysis B: Environmental, 2015, 178: 108-116. |
30 | 周美华, 李越湘. 剥离MoS2负载TiO2的制备与甘油水溶液光催化制氢[J]. 高校化学工程学报, 2017, 31(3): 609-617. |
ZHOU Meihua, LI Yuexiang. Preparation of exfoliated-MoS2 loaded TiO2 and its photocatalytic hydrogen production from aqueous glycerol solution[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 609-617. | |
31 | LEE S S, BAI H W, LIU Z Y, et al. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater[J]. Water Research, 2013, 47(12): 4059-4073. |
32 | PATSOURA A, KONDARIDES D I, VERYKIOS X E. Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes[J]. Applied Catalysis B: Environmental, 2006, 64(3/4): 171-179. |
33 | WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
34 | CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
35 | GONG Y T, LI M M, WANG Y. Carbon nitride in energy conversion and storage: recent advances and future prospects[J]. ChemSusChem, 2015, 8(6): 931-946. |
36 | ZHANG Gong, JI Qinghua, WU Zhang, et al. Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition[J]. Advanced Functional Materials, 2018, 28(14). DOI:10.1002/adfm.201706462. |
37 | ZENG Y X, LIU X, LIU C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 224: 1-9. |
38 | JIANG X H, WANG L C, YU F, et al. Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12695-12705. |
39 | PAN J Q, DONG Z J, WANG B B, et al. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g- C3N4 hollow core-shell nano-heterojunction[J]. Applied Catalysis B: Environmental, 2019, 242: 92-99. |
40 | NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Applied Catalysis B: Environmental, 2018, 227: 312-321. |
41 | LEI Z, YOU W, LIU M, et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method[J]. Chemical Communications, 2003(17): 2142-2143. |
42 | HU X L, YU J C, GONG J M, et al. Rapid mass production of hierarchically porous ZnIn2S4 submicrospheres via a microwave-solvothermal process[J]. Crystal Growth & Design, 2007, 7(12): 2444-2448. |
43 | ZHANG G P, CHEN D Y, LI N J, et al. Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI)[J]. Applied Catalysis B: Environmental, 2018, 232: 164-174. |
44 | 彭绍琴, 丁敏, 易婷, 等. 污染物甲胺为电子给体可见光下Pt/ZnIn2S4光催化制氢[J]. 分子催化, 2014, 28(5): 466-473. |
PENG Shaoqin, DING Min, YI Ting, et al. Photocatalytic hydrogen evolution in the presence of pollutant methylamines over Pt/ZnIn2S4 under visible light irradiation[J]. Journal of Molecular Catalysis, 2014, 28(5): 466-473. | |
45 | ZHANG S Q, WANG L L, LIU C B, et al. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst[J]. Water Research, 2017, 121: 11-19. |
46 | HONEYCHURCH K, HART J. Voltammetric behavior of p-nitrophenol and its trace determination in human urine by liquid chromatography with a dual reductive mode electrochemical detection system[J]. Electroanalysis, 2007, 19(21): 2176-2184. |
47 | ZHU R S, TIAN F, YANG R J, et al. Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light[J]. Renewable Energy, 2019, 139: 22-27. |
48 | ZHU R S, TIAN F, CAO G, et al. Construction of Z scheme system of ZnIn2S4/RGO/BiVO4 and its performance for hydrogen generation under visible light[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17350-17361. |
49 | XU Q L, ZHANG L Y, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
50 | LU D Z, WANG H M, ZHAO X N, et al. Highly efficient visible-light-induced photoactivity of Z-scheme g- C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1436-1445. |
51 | SHEN H Q, LIU G W, YAN X, et al. All-solid-state Z-scheme system of RGO-Cu2O/Fe2O3 for simultaneous hydrogen production and tetracycline degradation[J]. Materials Today Energy, 2017, 5: 312-319. |
52 | WEI Z D, LIU J Y, SHANGGUAN W F. A review on photocatalysis in antibiotic wastewater: pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10): 1440-1450. |
53 | BAI S, WANG L M, CHEN X Y, et al. Chemically exfoliated metallic MoS2 nanosheets: a promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals[J]. Nano Research, 2015, 8(1): 175-183. |
54 | 彭惠琛, 彭绍琴, 李越湘. 污染物为电子给体Cd0.5Zn0.5S固溶体光催化分解水制氢[J]. 南昌大学学报(理科版), 2016, 40(5): 465-468. |
PENG Huichen, PENG Shaoqin, LI Yuexiang. Photocatalytic hydrogen evolution from water splitting using pollutants as electron donors over Cd0.5Zn0.5S solid solution[J]. Journal of Nanchang University (Natural Science), 2016, 40(5): 465-468. | |
55 | 郭丽君, 李瑞, 刘建新, 等. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54. |
GUO Lijun, LI Rui, LIU Jianxin, et al. Study on hydrogen evolution efficiency of semiconductor photocatalysts for solar water splitting[J]. Progress in Chemistry, 2020, 32(1): 46-54. | |
56 | XIANG Q J, YU J G, JARONIEC M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7355-7363. |
57 | 李立业, 崔文权, 樊丽华, 等. K2La2Ti3O10光催化分解乙醇制氢[J]. 化工进展, 2010, 29(S1): 195-197. |
LI Liye, CUI Wenquan, FAN Lihua, et al. Hydrogen production by photocatalytic decomposition of ethanol with K2La2Ti3O10[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 195-197. | |
58 | LI Y, ZHANG D N, FENG X H, et al. Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment[J]. Chinese Journal of Catalysis, 2020, 41(1): 21-30. |
59 | HE J, CHEN L, WANG F, et al. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution[J]. ChemSusChem, 2016, 9(6): 624-630. |
60 | LIU L, QI Y H, HU J S, et al. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra[J]. Applied Surface Science, 2015, 351: 1146-1154. |
61 | LI K X, ZENG Z X, YAN L S, et al. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 165: 428-437. |
62 | HUANG G C, XIAO Z T, ZHEN W Q, et al. Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: an energy recovering water purification technology[J]. Water Research, 2020, 175: 115684. |
63 | CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. |
64 | BYRNE C, SUBRAMANIAN G, PILLAI S C. Recent advances in photocatalysis for environmental applications[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3531-3555. |
65 | KIM J, CHOI W. Hydrogen producing water treatment through solar photocatalysis[J]. Energy & Environmental Science, 2010, 3(8): 1042. |
66 | CHO Y J, MOON G H, KANAZAWA T, et al. Selective dual-purpose photocatalysis for simultaneous H2 evolution and mineralization of organic compounds enabled by a Cr2O3 barrier layer coated on Rh/SrTiO3[J]. Chemical Communications, 2016, 52(62): 9636-9639. |
67 | ZHANG W L, LI Y, WANG C, et al. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis[J]. Water Research, 2013, 47(3): 1480-1490. |
68 | XIE J, ZHANG H, LI S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813. |
69 | DASKALAKI V M, ANTONIADOU M, LI PUMA G, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater[J]. Environmental Science & Technology, 2010, 44(19): 7200-7205. |
70 | CAO B, LI G S, LI H X. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation[J]. Applied Catalysis B: Environmental, 2016, 194: 42-49. |
71 | TANG Shoufeng, WANG Zetao, YUAN Deling, et al. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate[J]. International Journal of Electrochemical Science, 2020, 15: 2470-2480. |
72 | 冯宝瑞, 刘海成, 李阳, 等. Fe3O4@SiO2@TiO2-AC光催化降解水源水中腐殖酸[J]. 工业水处理, 2020, 40(8): 55-59, 74. |
FENG Baorui, LIU Haicheng, LI Yang, et al. Photocatalytic degradation of humic acid in source water by Fe3O4@SiO2@TiO2-AC[J]. Industrial Water Treatment, 2020, 40(8): 55-59, 74. | |
73 | AHMED S, RASUL M G, BROWN R, et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review[J]. Journal of Environmental Management, 2011, 92(3): 311-330. |
74 | AKPAN U G, HAMEED B H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review[J]. Journal of Hazardous Materials, 2009, 170(2/3): 520-529. |
75 | CHAI B, PENG T Y, ZENG P, et al. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Dalton Transactions, 2012, 41(4): 1179-1186. |
76 | KIM J, CHOI W. TiO2 modified with both phosphate and platinum and its photocatalytic activities[J]. Applied Catalysis B: Environmental, 2011, 106(1/2): 39-45. |
77 | 高丹, 李志龙, 彭绍琴, 等. 乙二醇作电子给体的Pt/TiO2光催化海水制氢反应[J]. 南昌大学学报(理科版), 2010, 34(1): 82-84, 93. |
GAO Dan, LI Zhilong, PENG Shaoqin, et al. Photocatalytic hydrogen evolution using glycol as electron donors over Pt/TiO2[J]. Journal of Nanchang University (Natural Science), 2010, 34(1): 82-84, 93. | |
78 | KAMPOURI S, NGUYEN T N, SPODARYK M, et al. Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation[J]. Advanced Functional Materials, 2018, 28(52): 1806368. |
79 | SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UVH2O2 process: influence of nitrate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate and 4,4'-diaminostilbene-2,2'-disulfonate[J]. Water Research, 1997, 31(11): 2885-2891. |
80 | SÖRENSEN M, FRIMMEL F H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2-process. Influence of bicarbonate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate, and 4,4'-diaminostilbene-2,2'-disulfonate[J]. Acta Hydrochimica et Hydrobiologica, 1996, 24(4): 185-188. |
81 | WANG C Y, ZHU L Y, WEI M C, et al. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water[J]. Water Research, 2012, 46(3): 845-853. |
82 | LUO X, CHEN C, YANG J, et al. Characterization of La/Fe/TiO₂ and its photocatalytic performance in ammonia nitrogen wastewater[J]. International Journal of Environmental Research and Public Health, 2015, 12(11): 14626-14639. |
83 | 任学昌, 刘宏飞, 张翠玲, 等. 水体中常见无机阳离子对TiO2薄膜光催化还原Cr(Ⅵ)的影响[J]. 环境工程学报, 2010, 4(2): 288-292. |
REN Xuechang, LIU Hongfei, ZHANG Cuiling, et al. Effects of inorganic cations on photocatalytic reduction of chromium(Ⅵ) over TiO2 thin films[J]. Chinese Journal of Environmental Engineering, 2010, 4(2): 288-292. | |
84 | KRAEUTLER B, BARD A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates[J]. Journal of the American Chemical Society, 1978, 100(13): 4317-4318. |
85 | 姜安玺, 高洁, 王化云, 等. 水中腐殖酸的光催化氧化研究[J]. 哈尔滨建筑大学学报, 2001(2): 44-47. |
JIANG Anxi, GAO Jie, WANG Huayun, et al. Photocatalytic oxidation of humic acid in water[J]. Journal of Harbin University of Civil Engineering and Architecture, 2001(2): 44-47. | |
86 | CASSANO A E, ALFANO O M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors[J]. Catalysis Today, 2000, 58(2/3): 167-197. |
87 | SAKTHIVEL S, NEPPOLIAN B, SHANKAR M V, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Materials and Solar Cells, 2003, 77(1): 65-82. |
88 | SAUER T, CESCONETO NETO G, JOSÉ H J, et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149(1/2/3): 147-154. |
89 | SUN D C, SUN W Z, YANG W Y, et al. Efficient photocatalytic removal of aqueous NH4+-NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions[J]. Chemical Engineering Journal, 2015, 264: 728-734. |
90 | 张向华, 刘鸿, 李文钊, 等. 弱紫外光光催化降解2,4-二氯苯氧基乙酸、对氯酚和草酸同时产氢[J]. 催化学报, 2008, 29(3): 281-286. |
ZHANG Xianghua, LIU Hong, LI Wenzhao, et al. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, 4-chlorophenol, and oxalic acid with simultaneous hydrogen production under weak UV light illumination[J]. Chinese Journal of Catalysis, 2008, 29(3): 281-286. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[12] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[13] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[14] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[15] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |