Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 2993-3004.DOI: 10.16085/j.issn.1000-6613.2020-1945
• Column: New Energy Chemical Industry • Previous Articles Next Articles
HE Jing(), WANG Xiaojiang, ZHANG Shuomeng, HE Qinggang(
)
Received:
2020-09-23
Revised:
2021-01-25
Online:
2021-06-22
Published:
2021-06-06
Contact:
HE Qinggang
通讯作者:
和庆钢
作者简介:
和晶(1996—),女,硕士研究生,研究方向为燃料电池、 原位电化学表征等。E-mail:基金资助:
CLC Number:
HE Jing, WANG Xiaojiang, ZHANG Shuomeng, HE Qinggang. Application of atomic force microscopy in the surface/interface phenomena of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2993-3004.
和晶, 王晓江, 张硕猛, 和庆钢. 原子力显微镜在质子交换膜燃料电池表/界面现象中的应用[J]. 化工进展, 2021, 40(6): 2993-3004.
1 | 池滨, 侯三英, 刘广智, 等. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(S1): 243-251. |
CHI Bin, HOU Sanying, LIU Guangzhi, et al. High performance and high power density membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(S1): 243-251. | |
2 | 王颖锋, 李凯, 李水荣, 等. 用于质子交换膜燃料电池的高温无机质子传导材料研究进展[J]. 化工进展, 2019, 38(5): 2212-2221. |
WANG Yingfeng, LI Kai, LI Shuirong, et al. Progress in high temperature inorganic proton conduction materials used for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2212-2221. | |
3 | 吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220. |
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220. | |
4 | BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930. |
5 | GARCIA R, HERRUZO E T. The emergence of multifrequency force microscopy[J]. Nature Nanotechnology, 2012, 7(4): 217-226. |
6 | GARCIA R, KNOLL A W, RIEDO E. Advanced scanning probe lithography[J]. Nature Nanotechnology, 2014, 9(8): 577-587. |
7 | GERBER C, LANG H P. How the doors to the nanoworld were opened[J]. Nature Nanotechnology, 2006, 1(1): 3-5. |
8 | DUFRÊNE Y F, ANDO T, GARCIA R, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology[J]. Nature Nanotechnology, 2017, 12(4): 295-307. |
9 | LIPSON A L, HERSAM M C. Conductive scanning probe characterization and nanopatterning of electronic and energy materials[J]. The Journal of Physical Chemistry C, 2013, 117(16): 7953-7963. |
10 | MELITZ W, SHEN J, KUMMEL A C, et al. Kelvin probe force microscopy and its application[J]. Surface Science Reports, 2011, 66(1): 1-27. |
11 | LIU L M, LI G Y. Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy[J]. Applied Physics Letters, 2010, 96(8): 083302. |
12 | MASUDA H, ISHIDA N, OGATA Y, et al. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy[J]. Nanoscale, 2017, 9(2): 893-898. |
13 | MANNE S, HANSMA P K, MASSIE J, et al. Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold[J]. Science, 1991, 251(4990): 183-186. |
14 | BREITWIESER M, KLINGELE M, VIERRATH S, et al. Tailoring the membrane-electrode interface in PEM fuel cells: a review and perspective on novel engineering approaches[J]. Advanced Energy Materials, 2018, 8(4): 1701257. |
15 | HAN B, MO J K, KANG Z Y, et al. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells[J]. Electrochimica Acta, 2016, 188: 317-326. |
16 | NISHIHARA S, OTANI M. Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory[J]. Physical Review B, 2017, 96(11): 115429. |
17 | MENDIL-JAKANI H, ZAMANILLO LÓPEZ I, MAREAU V H, et al. Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 16013-16022. |
18 | SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805. |
19 | HE Q, KUSOGLU A, LUCAS I T, et al. Correlating humidity-dependent ionically conductive surface area with transport phenomena in proton-exchange membranes[J]. The Journal of Physical Chemistry B, 2011, 115(40): 11650-11657. |
20 | KALISVAART W P, FRITZSCHE H, MÉRIDA W. Water uptake and swelling hysteresis in a nafion thin film measured with neutron reflectometry[J]. Langmuir, 2015, 31(19): 5416-5422. |
21 | DECALUWE S C, KIENZLE P A, BHARGAVA P, et al. Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures[J]. Soft Matter, 2014, 10(31): 5763-5776. |
22 | SUSAC D, BEREJNOV V, HITCHCOCK A P, et al. STXM study of the ionomer distribution in the PEM fuel cell catalyst layers[J]. ECS Transactions, 2019, 41(1): 629-635. |
23 | HOLDCROFT S. Fuel cell catalyst layers: a polymer science perspective[J]. Chemistry of Materials, 2014, 26(1): 381-393. |
24 | 何丽, 韩喆, 冯坤, 等. 操作条件对质子交换膜燃料电池电化学阻抗动态行为的影响[J]. 化工进展, 2018, 37(2): 533-539. |
HE Li, HAN Zhe, FENG Kun, et al. Effects of operating conditions on PEMFC dynamic behavior by EIS[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 533-539. | |
25 | 付凤艳, 张杰, 程敬泉, 等. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(5): 2233-2241. |
FU Fengyan, ZHANG Jie, CHENG Jingquan, et al. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2233-2241. | |
26 | MAJLAN E H, ROHENDI D, DAUD W R W, et al. Electrode for proton exchange membrane fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 117-134. |
27 | ROSLI R E, SULONG A B, DAUD W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314. |
28 | OTT S, ORFANIDI A, SCHMIES H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19(1): 77-85. |
29 | SLADE S, CAMPBELL S A, RALPH T R, et al. Ionic conductivity of an extruded nafion 1100 EW series of membranes[J]. Journal of the Electrochemical Society, 2002, 149(12): A1556. |
30 | HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611. |
31 | SCHUSTER M F H, MEYER W H. Anhydrous proton-conducting polymers[J]. Annual Review of Materials Research, 2003, 33(1): 233-261. |
32 | CHEN L, TANG H L, LI J R, et al. Highly ordered Nafion-silica-HPW proton exchange membrane for elevated temperature fuel cells[J]. International Journal of Energy Research, 2013, 37(8): 879-887. |
33 | LU J L, LU S F, JIANG S P. Highly ordered mesoporous Nafion membranes for fuel cells[J]. Chemical Communications, 2011, 47(11): 3216. |
34 | SON B, OH K, PARK S, et al. Study of morphological characteristics on hydrophilicity-enhanced SiO2 /Nafion composite membranes by using multimode atomic force microscopy[J]. International Journal of Energy Research, 2019, 43(9): 4157-4169. |
35 | CHANDRA SUTRADHAR S, RAHMAN M M, AHMED F, et al. Improved proton conductive membranes from poly(phenylenebenzophenone)s with pendant sulfonyl imide acid groups for fuel cells[J]. Journal of Power Sources, 2019, 442: 227233. |
36 | CHEN R M, JIN J H, YANG S L, et al. Effect of pendant group containing fluorine on the properties of sulfonated poly(arylene ether sulfone)s as proton exchange membrane[J]. Journal of Materials Science, 2017, 52(2): 1028-1038. |
37 | HIESGEN R, ALEKSANDROVA E, MEICHSNER G, et al. High-resolution imaging of ion conductivity of Nafion® membranes with electrochemical atomic force microscopy[J]. Electrochimica Acta, 2009, 55(2): 423-429. |
38 | O’HAYRE R, FENG G, NIX W D, et al. Quantitative impedance measurement using atomic force microscopy[J]. Journal of Applied Physics, 2004, 96(6): 3540-3549. |
39 | WANG X, HABTE B T, ZHANG S, et al. Localized electrochemical impedance measurements on nafion membranes: observation and analysis of spatially diverse proton transport using atomic force microscopy[J]. Analytical Chemistry, 2019, 91(18): 11678-11686. |
40 | 张健, 党岱, 姬文晋, 等. 非铂燃料电池电催化剂研究进展[J]. 化工进展, 2019, 38(7): 3153-3162. |
ZHANG Jian, DANG Dai, JI Wenjin, et al. Research progress in non-platinum fuel cells electrocatalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3153-3162. | |
41 | GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 836
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 529
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |