1 |
MIRZAEI A, PARK S, SUN G J, et al. Fe2O3/Co3O4 composite nanoparticle ethanol sensor[J]. Journal of the Korean Physical Society, 2016, 69(3): 373-380.
|
2 |
PRADYOT P. A comprehensive guide to the hazardous properties of chemical substances[J]. Loss Prevention in the Process Industries, 2008, 21: 489-492.
|
3 |
LI Z, LI H, WU Z, et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature[J]. Materials Horizons, 2019, 6: 470-506.
|
4 |
王晓冬, 周利星, 魏莹, 等. SnO2中空微球的制备与气敏性能[J]. 化工进展, 2018, 37(11): 249-254.
|
|
WANG X D, ZHOU L X, WEI Y, et al. Synthesis of hollow SnO2 microspheres and their enhanced sensing properties to ethanol[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 249-254.
|
5 |
XIE X, LI Y, LIU Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458: 746-749.
|
6 |
POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithiumion battenries[J]. Nature, 2010, 32(3): 496-499.
|
7 |
王军霞, 赵建伟, 秦丽溶, 等. 镍掺杂四氧化三钴纳米线阵列的制备及其超级电容特性[J]. 无机材料学报, 2018, 33(5): 501-506.
|
|
WANG J X, ZHAO J W, QIN L R, et al. Synthesis and supercapacitor property of Ni-doped Co3O4 nanowire array[J]. Journal of Inorganic Materials, 2018, 33(5): 501-506.
|
8 |
张晓, 徐瑶华, 刘皓, 等. 基于金属氧化物的乙醇检测气敏材料的研究进展[J]. 化工进展, 2019, 38(7): 3207-3226.
|
|
ZHANG X, XU Y H, LIU H, et al. Recent advances of ethanol detection materials based on metal oxides[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3207-3226.
|
9 |
ZHANG T, TANG X, ZHANG J, et al. Metal-organic framework-assisted construction of TiO2/Co3O4 highly ordered necklace-like heterostructures for enhanced ethanol vapor sensing performance[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(48): 14577-14585.
|
10 |
BAI S L, LIU H, SUN J H, et al. Mechanism of enhancing Co3O4 sensing properties to formaldehyde via Ag modification[J]. RSC Advances, 2015, 5: 48619-48625.
|
11 |
ZHANG Y, YANG A G, YANG X Y, et al. One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance[J]. Microporous and Mesoporous Materials, 2018, 270: 75-81.
|
12 |
LIU L H, YANG M, GAO S, et al. Co3O4 hollow nanosphere-decorated graphene sheets for H2S sensing near room temperature[J]. ACS Applied Nano Materials, 2019, 2(9): 5409-5419.
|
13 |
JIN H, DAI Y, WEI W, et al. Density functional characterization of B doping at rutile TiO2(110) surface[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 195411-195419.
|
14 |
YU C C, HSU Y T, LEE S Y, et al. Effects of doping ratio and thermal annealing on structural and electrical properties of boron-doped ZnO thin films by spray pyrolysis[J]. Japanese Journal of Applied Physics, 2013, 52: 65502-65507.
|
15 |
WONG L H, LAI Y S. Characterization of boron-doped ZnO thin films prepared by magnetron sputtering with (100-x)ZnO-xB2O3 ceramic targets[J]. Thin Solid Films, 2015, 583: 205-211.
|
16 |
PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Physical Review Letters, 1939, 56(10): 978-982.
|
17 |
ALVER U, YAYKASH H, KERLI S, et al. Synthesis and characterization of boron-doped NiO thin films produced by spray pyrolysis[J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(11): 1097-1101.
|
18 |
ARTIGLIA L, LAZZARI D, AGNOLI S, et al. Searching for the formation of Ti—B bonds in B-doped TiO2-rutile[J]. The Journal of Physical Chemistry C, 2013, 117(25): 13163-13172.
|
19 |
PIL G C, TERUAKI F, KENICHI K, et al. Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles[J]. ACS Sensors, 2020, 6(5): 1665-1673.
|
20 |
HADJIEV V G, ILIEV M N, VERGILOV I V. The Raman spectra of Co3O4[J]. Journal of Physics C: Solid State Physics, 1988, 21(7): 199-201.
|
21 |
ARAVIND A, HASNA K, JAYARAJ M, et al. Magnetic and Raman scattering studies of Co-doped ZnO thin films grown by pulsed laser deposition[J]. Applied Physics A, 2014, 115(3): 843-849.
|
22 |
SINGH G, THANGARAJ R, SINGH R C. Effect of crystallite size, Raman surface modes and surface basicity on the gas sensing behavior of terbium-doped SnO2 nanoparticles[J]. Ceramics International, 2016, 42(3): 4323-4332.
|
23 |
MIGUEL Q G, BOSCHER N D, CARMALT C J, et al. Interstitial boron-doped TiO2 thin films: the significant effect of boron on TiO2 coatings grown by atmospheric pressure chemical vapor deposition[J]. ACS Applied Materials and Interfaces, 2016, 8(38): 25024-25029.
|
24 |
HU W L, WANG L D, WU Q F, et al. Facile synthesis, magnetic and optical properties of double-shelled Co3O4 hollow microspheres[J]. Advanced Powder Technology, 2014, 25(6): 1780-1785.
|
25 |
WANG H F, KAVANAGH R, GUO Y L, et al. Origin of extraordinarily high catalytic activity of Co3O4 and its morphological chemistry for CO oxidation at low temperature[J]. Journal of Catalysis, 2012, 296: 110-119.
|
26 |
SUN J H, SUN L X, HAN N, et al. Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensing detection of NO2[J]. Sensors and Actuators B: Chemical, 2019, 285: 68-75.
|
27 |
CHE H W, LIU A, HOU J, et al. Synthesis of one-dimensional porous Co3O4 nanobelts and their ethanol gas sensing properties[J]. Materials Research Bulletin, 2014, 59: 69-76.
|
28 |
LIU X D, LIU J Y, LIU Q, et al. Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor[J]. Ceramics International, 2018, 44(17): 21091-21098.
|
29 |
LIN G, WANG H, LAI X Y, et al. Co3O4/N-doped rGO nanocomposites derived from MOFs and their highly enhanced gas sensing performance[J]. Sensors and Actuators B: Chemical, 2020, 303: 127219-127228.
|
30 |
LI Y, SHEN W J. Morphology-dependent nanocatalysis on metal oxides[J]. Science China Chemistry, 2012, 55(12): 2485-2496.
|