1 |
ZHU S, WU M, GE M H, et al. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors[J]. Journal of Power Sources, 2016, 306: 593-601.
|
2 |
FENG C, ZHAGN J, HE Y, ZHONG C, et al. Sub-3nm Co3O4 nanofilms with enhanced supercapacitor properties[J]. ACS Nano, 2015, 9(2): 1730-1739.
|
3 |
YU Z, DUONG B, ABBITT D, et al. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance[J]. Advanced Materials, 2013, 25(24): 3302-3306.
|
4 |
LI F, XING Y, HUAGN M, et al. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors[J]. Mater. Chem. A., 2015, 3(15): 7855-7861.
|
5 |
CAO F, PAN G X, XIA X H, et al. Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application[J]. Journal of Power Sources, 2014, 264: 161-167.
|
6 |
LIU Z, ZHOU W, WANG S, et al. Facile synthesis of homogeneous core-shell Co3O4 mesoporous nanospheres as high performance electrode materials for supercapacitor[J]. Journal of Alloys & Compounds, 2019, 774: 137-144.
|
7 |
REN X, TIAN C, LI S, et al. Facile synthesis of tremella-like MnO2 and its application as supercapacitor electrodes[J]. Frontiers of Materials Science, 2015, 9(3): 234-240.
|
8 |
NAGAMUTHU S, VIJAYAKUMAR S, MURALIDHARAN G. Biopolymer-assisted synthesis of λ-MnO2 nanoparticles as an electrode material for aqueous symmetric supercapacitor devices[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18262-18268.
|
9 |
FU Y Y, LU X, ZHAO W K, et al. Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode[J]. Applied Surface Science, 2015, 357: 2013-2021.
|
10 |
BABU G A, RAVI G, MAHALINGAM T, et al. Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications[J]. Dalton Transactions, 2015, 44(10): 4485-4497.
|
11 |
HU C, CHEN S, WANG Y, et al. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis[J]. Journal of Power Sources, 2016, 321: 94-101.
|
12 |
AMBADE R B, AMBADE S B, SALUNKHE R R, et al. Flexible-wire shaped all-solid-state supercapacitors based on facile electro polymerization of polythiophene with ultra-high energy density[J]. J. Mater. Chem. A, 2016, 4: 7406-7415.
|
13 |
LI L, HU H, DING S, et al. Facile synthesis of ultrathin and perpendicular NiMn2O4 nanosheets on reduced graphene oxide as advanced electrodes for supercapacitors[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1714-1720.
|
14 |
WANG Z B, ZHU Z H, ZHANG C L, et al. Facile synthesis of reduced graphene oxide/NiMn2O4 nanorods hybrid materials for high-performance supercapacitors[J]. Electrochimica Acta, 2017, 230: 438-444.
|
15 |
XU Y, WANG L, CAO P, et al. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors[J]. Journal of Power Sources, 2016, 306: 742-752.
|
16 |
XU X B, LIU Y, DONG P, et al. Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors [J]. Journal of Power Sources, 2018, 400:96-103.
|
17 |
YIN Q, HE L, LIAN J, et al. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors [J]. Carbon, 2019, 155: 147-154.
|
18 |
WEI Y, CHEN S, SU D, et al. 3D mesoporous hybrid NiCo2O4@ graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances[J]. Journal of Materials Chemistry A, 2014, 2(21): 8103.
|
19 |
LIU S, WU J, ZHOU J, et al. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors[J]. Electrochimica Acta, 2015, 176: 1-9.
|
20 |
HE G, WANG L, CHEN H, et al. Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material[J]. Materials Letters, 2013, 98: 164-167.
|
21 |
张丹. 过渡金属氧化物及氮化物与碳复合负极材料的合成和电化学性能研究[D]. 长春:吉林大学,2019.
|
|
ZHANG D. Synthesis and electrochemical properties of transition metal oxides and nitride/carbon anode materials[D]. Changchun: Jilin University, 2019.
|