Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 835-844.DOI: 10.16085/j.issn.1000-6613.2020-0651
• Industrial catalysis • Previous Articles Next Articles
Daocheng LIU(), Jiuzhan WANG, Jieying JING(), Zhifen YANG, Jie FENG, Wenying LI
Received:
2020-04-24
Revised:
2020-04-24
Online:
2021-02-09
Published:
2021-02-05
Contact:
Jieying JING
刘道诚(), 王九占, 荆洁颖(), 杨志奋, 冯杰, 李文英
通讯作者:
荆洁颖
作者简介:
刘道诚(1996—),男,硕士研究生,研究方向为煤基粗油加氢提质。E-mail:基金资助:
CLC Number:
Daocheng LIU, Jiuzhan WANG, Jieying JING, Zhifen YANG, Jie FENG, Wenying LI. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 835-844.
刘道诚, 王九占, 荆洁颖, 杨志奋, 冯杰, 李文英. 稠环芳烃加氢饱和催化剂研究进展[J]. 化工进展, 2021, 40(2): 835-844.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0651
60 | LIU J, ZHANG H, LU N, et al. Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1056-1064. |
61 | YANG H, CHEN H L, CHEN J W, et al. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts[J]. Journal of Catalysis, 2006, 243(1): 36-42. |
62 | LIN Q, SHIMIZU K I, SATSUMA A. Hydrogenation of pyrene using Pd catalysts supported on tungstated metal oxides[J]. Applied Catalysis A: General, 2010, 387(1/2): 166-172. |
63 | TANG T D, YIN C Y, WANG L F, et al. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics[J]. Journal of Catalysis, 2008, 257(1): 125-133. |
64 | 侯朝鹏, 李永丹, 赵地顺. 芳烃加氢金属催化剂抗硫性研究的进展[J]. 化工进展, 2003, 22(4): 366-371. |
HOU C P, LI Y D, ZHAO D S. Research on sulfur tolerance of metal catalysts in aromatics hydrogenation[J]. Chemical Industry and Engineering Progress, 2003, 22(4): 366-371. | |
1 | 中华人民共和国国家质量监督检验检疫总局, 环境保护部. 轻型汽车污染物排放限值及测量方法(中国第六阶段): [S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Ecology and Environment of the People’s Republic of China. Limits and measurement methods for emissions from light-duty vehicles (): GB 18352.6—2016[S]. Beijing: Standards Press of China, 2016. | |
65 | TREESUKOL P, SRISUK K, LIMTRAKUL J, et al. Nature of the metal-support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite[J]. Journal of Physical Chemistry B, 2005, 109(24): 11940-11945. |
66 | 邓澄浩, 祁晓岚, 郑均林, 等. 贵金属/分子筛催化芳烃转化的研究进展[J]. 化工进展, 2017, 36(5): 1711-1718. |
2 | 董立霞, 夏步田, 罗凯威, 等. 清洁油品升级背景下加氢脱硫技术研究进展[J]. 化工进展, 2019, 38(1): 215-223. |
DONG L X, XIA B T, LUO K W, et al. Review of hydrodesulfurization technology based on the upgrading requirement of clean gasoline[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 215-223. | |
66 | DENG C H, QI X L, DENG J L, et al. Advances in the noble metal-zeolite catalysts for aromatic conversion[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1711-1718. |
67 | 姬宝艳, 吴彤彤, 周可, 等. 稠环芳烃加氢裂化机理和催化剂研究进展[J]. 石油化工, 2006, 45(10): 1263-1271. |
3 | 谷小会. 煤焦油分离方法及组分性质研究现状与展望[J]. 洁净煤技术, 2018, 24(4): 1-6, 12. |
GU X H. Status and prospect of separation methods and composition characteristics of coal tar[J]. Clean Coal Technology, 2018, 24(4):1-6, 12. | |
4 | 徐春霞. 煤焦油的性质与加工利用[J]. 洁净煤技术, 2013, 19(5): 63-67. |
XU C X. Characteristics and processing utilization of coal tar[J]. Clean Coal Technology, 2013, 19(5): 63-67. | |
5 | 姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507. |
YAO C L, QUAN H, ZHANG Z Q. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507. | |
6 | 范启明, 米镇涛, 张香文, 等. 提高航空燃料热安定性的研究进展[J]. 石化技术与应用, 2002, 20(4): 261-263, 272. |
FANG Q M, MI Z T, ZHANG X W, et al. Progress in research of improving thermal stability of aviation fuels[J]. Petrochemical Technology & Application, 2002, 20(4): 261-263, 272. | |
7 | 胡意文, 达志坚, 王子军. 几种芳烃加氢反应的热力学分析[J]. 石油学报, 2015, 31(1): 7-17. |
HU Y W, DA Z J, WANG Z J. Thermodynamic analysis on the hydrogenation reaction of several aromatic hydrocarbons[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 7-17. | |
67 | JI B Y, WU T T, ZHOU K, et al. Progresses in research for hydrocracking mechanism and catalysts of polycyclic aromatic hydrocarbons[J]. Petrochemical Technology, 2006, 45(10): 1263-1271. |
68 | CUI S, WANG G, YANG Y, et al. Influence of Si/Al molar ratio on the hydrogenation, isomerization and ring opening of naphthalene over silica-alumina supported Ni2P catalyst[J]. Fuel, 2018, 225: 10-17. |
69 | ZHANG L, FU W Q, YU Q Y, et al. Effect of citric acid addition on the morphology and activity of Ni2P supported on mesoporous zeolite ZSM-5 for the hydrogenation of 4,6-DMDBT and phenanthrene[J]. Journal of Catalysis, 2017, 345: 295-307. |
70 | QIU S B, ZHANG X, LIU Q Y, et al. A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation[J]. Catalysis Communications, 2013, 42(23): 73-78. |
71 | VARGAS-VILLAGRÁN H, RAMÍREZ-SUÁREZ D, RAMÍREZ-MUÑOZ G, et al. Tuning of activity and selectivity of Ni/(Al)SBA-15 catalysts in naphthalene hydrogenation[J]. Catalysis Today, 2021, 360: 27-37. |
72 | NAVARRO R M, PAWELEC B, TREJO J M, et al. Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts[J]. Journal of Catalysis, 2000, 189(1): 184-194. |
73 | MATSUBAYASHI N, YASUDA H, IMAMURA M, et al. EXAFS study on Pd-Pt catalyst supported on USY zeolite[J]. Catalysis Today, 1998, 45(1-4): 375-380. |
74 | LUO M J, WANG Q F, LI G Z, et al. AlCl3-promoted MCM-41-supported platinum catalysts with high activity and sulfur-tolerance for tetralin hydrogenation: effect of Al/Pt ratio[J]. Catalysis Letters, 2013, 143(5): 454-462. |
75 | RUBAN A, HAMMER B, STOLTZE P, et al. Surface electronic structure and reactivity of transition and noble metals[J]. Journal of Molecular Catalysis A: Chemical, 1997, 115(3): 421-429. |
76 | NØRSKOV J K, BLIGAARD T, ROSSMEISL J, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1): 37-46. |
8 | BELTRAMONE A R, DANIEL E R, ALVAREZ W E, et al. Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst[J]. Industrial & Engineering Chemistry Research, 2008, 47(19): 7161-7166. |
9 | 包洪洲, 方向晨, 刘继华, 等. 柴油加氢脱芳烃动力学模型研究进展[J]. 化工进展, 2011, 30(5): 948-952, 1018. |
BAO H Z, FANG X C, LIU J H, et al. Advance in kinetics model of diesel hydrodearomatization reaction[J]. Chemical Industry and Engineering Progress, 2011, 30(5): 948-952, 1018. | |
10 | JONGPATIWUT S, LI Z R, RESASCO D E, et al. Competitive hydrogenation of poly-aromatic hydrocarbons on sulfur-resistant bimetallic Pt-Pd catalysts[J]. Applied Catalysis A: General, 2004, 262(2): 241-253. |
11 | 侯朝鹏, 李永丹, 夏国富, 等. 蒽和菲加氢反应热力学分析[J]. 石油化工, 2013, 42(7): 761-766. |
HOU C P, LI Y D, XIA G F, et al. Thermodynamic analysis for hydrogenation of anthracene and phenanthrene[J]. Petrochemical Technology, 2013, 42(7): 761-766. | |
12 | NARANOV E R, MAXIMOV A L. Selective conversion of aromatics into cis-isomers of naphthenes using Ru catalysts based on the supports of different nature[J]. Catalysis Today, 2019, 329: 94-101. |
13 | 段爱军, 万国赋, 赵震. 柴油催化加氢脱芳烃研究进展[J]. 现代化工, 2005, 25(3): 14-18. |
DUAN A J, WANG G F, ZHAO Z. Research advances in catalytic hydro-dearomatization of diesel fuel[J]. Modern Chemical Industry, 2005, 25(3): 14-18. | |
14 | ESCOBAR J, BARRERA M C, SANTES V, et al. Naphthalene hydrogenation over Mg-doped Pt/Al2O3[J]. Catalysis Today, 2017, 296: 197-204. |
15 | STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: a review[J]. Catalysis Reviews, 1994, 36(1): 75-123. |
16 | BOND G C, WELLS P B. The mechanism of the hydrogenation of unsaturated hydrocarbons on transition metal catalysts[J]. Advances in Catalysis, 1965, 15(12): 91-226. |
17 | MORIN C, SIMON D, SAUTET P. Chemisorption of benzene on Pt(111), Pd(111), and Rh(111) metal surfaces: a structural and vibrational comparison from first principles[J]. Journal of Physical Chemistry B, 2004, 108(18): 5653-5665. |
18 | PRIMET M, GARBOWSKI E, MATHIEU M, et al. Spectroscopic studies of benzene hydrogenation on platinum-loaded zeolites. Part 2.Hydrogenation of adsorbed species[J]. Journal of the Chemical Society Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980, 76: 1953-1961. |
19 | 王红梅, 李美元, 白金, 等. 新型类贵金属加氢脱氧催化剂的研究进展[J]. 精细石油化工, 2017, 34(3): 75-80. |
WANG H M, LI M Y, BAI J, et al. Progress of novel similar noble metal catalysts for hydrodeoxygenation[J]. Speciality Petrochemicals, 2017, 34(3): 75-80. | |
20 | DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: the “rim-edge”model[J]. Journal of Catalysis, 1994, 149(2): 414-427. |
21 | SCHACHTL E, ZHONG L, KONDRATIEVA E, et al. Understanding Ni promotion of MoS2/γ-Al2O3 and its implications for the hydrogenation of phenanthrene[J]. ChemCatChem, 2015, 7: 4118-4130. |
22 | SCHACHTL E, YOO J S, GUTIéRREZ O Y, et al. Impact of Ni promotion on the hydrogenation pathways of phenanthrene on MoS2/ γ-Al2O3[J]. Journal of Catalysis, 2017, 352: 171-181. |
23 | LUO W Q, SHI H, SCHACHTL E, et al. Active sites on nickel-promoted transition-metal sulfides that catalyze hydrogenation of aromatic compounds[J]. Angewandte Chemie (International ed. in English), 2018, 57: 14555-14559. |
24 | FU W Q, ZHANG L, WU D F, et al. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. Journal of Catalysis, 2015, 330: 423-433. |
25 | JIANG Y X, WANG D G, LI J H, et al. Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction[J]. Catalysis Science & Technology, 2017, 7: 2998-3007. |
26 | WANG D G, LI J H, ZHENG A D, et al. Quasi-single-layer MoS2 on MoS2/TiO2 nanoparticles for anthracene hydrogenation[J]. ACS Applied Nano Materials, 2019, 2(8): 5096-5107. |
27 | JACINTO M J, GONZALES M G, ZANATO A F S, et al. Rh nanoparticles grafted on mesoporous silica support as a high-efficiency catalyst for anthracene hydrogenation[J]. Sustainable Chemistry and Pharmacy, 2017, 6: 90-95. |
28 | MORIN C, SIMON D, SAUTET P. Trends in the chemisorption of aromatic molecules on a Pt(111) surface: benzene, naphthalene, and anthracene from first principles calculations[J]. Journal of Physical Chemistry B, 2004, 108(32): 12084-12091. |
29 | CORMA A, MARTı́NEZ A, MARTı́NEZ-SORIA V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts[J]. Journal of Catalysis, 1997, 169(2): 480-489. |
30 | WILLIAMS M F, FONFé B, SIEVERS C, et al. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials[J]. Journal of Catalysis, 2007, 251(2): 485-496. |
31 | WILLIAMS M F, FONFé B, WOLTZ C, et al. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts II. Influence of the support on catalytic activity[J]. Journal of Catalysis, 2007, 251(2): 497-506. |
32 | LIU Z Q, WEI X Y, LIU F J, et al. Temperature-controlled hydrogenation of anthracene over nickel nanoparticles supported on attapulgite powder[J]. Fuel, 2018, 223: 222-229. |
33 | GHADAMI Y M, MOUD P H, MARKS K, et al. Naphthalene on Ni(111): experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22199-22207. |
34 | WU J, REN S, ZHAO R, et al. Promotion of the Ni/γ-Al2O3 catalyst for the hydrogenation of naphthalene by silica coating[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(2): 793-807. |
35 | WANG M L, QIAN X Q, XIE L Q, et al. Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 1989-1997. |
36 | GONG P, LI B, KONG X, et al. Well-dispersed Ni nanoclusters on the surfaces of MFI nanosheets as highly efficient and selective catalyst for the hydrogenation of naphthalene to tetralin[J]. Applied Surface Science, 2017, 423: 433-442. |
37 | 杨仁春, 吴俊升, 田然, 等. 镍/氧化铝型催化剂表面结构的研究进展[J]. 化工进展, 2014, 33(1): 92-98, 164. |
YANG R C, WU J S, TIAN R, et al. Research progress in the surface structure of Ni/Al2O3 catalysts[J]. Chemical Industry and Engineering Progress, 2014, 33(1): 92-98, 164. | |
38 | CHEN J G. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities[J]. Chemical Reviews, 1996, 96: 1477-1498. |
39 | OYAMA S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides[J]. Journal of Catalysis, 2003, 216(1): 343-352. |
40 | OYAMA S T, LEE Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT[J]. Journal of Catalysis, 2008, 258(2): 393-400. |
41 | ARDAKANI S J, LIU X B, SMITH K J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts[J]. Applied Catalysis A: General, 2007, 324: 9-19. |
42 | COSTA P D, LEMBERTON J L, POTVIN C, et al. Tetralin hydrogenation catalyzed by Mo2C/Al2O3 and WC/Al2O3 in the presence of H2S[J]. Catalysis Today, 2001, 65(2): 195-200. |
43 | SAJKOWSKI D J, OYAMA S T. Catalytic hydrotreating by molybdenum carbide and nitride: unsupported Mo2N and Mo2C/Al2O3[J]. Applied Catalysis A: General, 1996, 134(2): 339-349. |
44 | WANG X Q, CLARK P, OYAMA S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides[J]. Journal of Catalysis, 2002, 208(2): 321-331. |
45 | MAMèDE A S, GIRAUDON J M, LöFBERG A, et al. Hydrogenation of toluene over β-Mo2C in the presence of thiophene[J]. Applied Catalysis A: General, 2002, 227(1): 73-82. |
46 | OYAMA S T, WANG X, LEE Y K, et al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques[J]. Journal of Catalysis, 2002, 210(1): 207-217. |
47 | HU D, DUAN A, XU C, et al. Ni2P promotes the hydrogenation activity of naphthalene on wrinkled silica nanoparticles with tunable hierarchical pore sizes in a large range[J]. Nanoscale, 2019, 11(33): 15519-15529. |
48 | 郄志强, 张子毅, 荆洁颖, 等. Ni2P负载量对Ni2P/Ce-Al2O3催化剂结构及萘加氢性能的影响[J]. 燃料化学学报, 2019, 47(6): 718-724. |
QIE Z Q, ZHANG Z Y, JING J Y, et al. Effect of Ni2P loading on the structure and naphthalene hydrogenation performance of Ni2P/Ce-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 718-724. | |
49 | 郄志强. Ni2P/Ce-Al2O3催化剂的低温制备及其萘加氢饱和性能研究[D]. 太原: 太原理工大学, 2019. |
QIE Z Q. Low temperature synthesis of Ni2P/Ce-Al2O3 catalyst and its hydrogenation saturation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
50 | 张子毅. Ni2P/Ce-Al2O3催化剂制备及其萘饱和加氢性能研究[D]. 太原: 太原理工大学, 2018. |
ZHANG Z Y. Preparation of Ni2P/Ce-Al2O3 catalyst and its saturated hydrogenation performance of naphthalene[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
51 | 杨志奋. 负载型Ni2P催化剂结构调控及萘加氢性能研究[D]. 太原: 太原理工大学, 2020. |
YANG Z F. Structure adjustment of supported Ni2P catalyst and its naphthalene hydrogenation performance[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
52 | JIANG C G, WANG Y G, ZHANG H Y, et al. Effect of initial Si/Al ratios on the performance of low crystallinity Hβ-X zeolite supported NiMo carbide catalysts for aromatics hydrogenation[J]. Catalysis Science & Technology, 2019, 9(18): 5031-5044. |
53 | 任艳群, 王冲, 莫家乐, 等. 介孔分子筛载体在油品深度加氢脱硫中的应用研究进展[J]. 化工进展, 2011, 30(4): 743-752. |
REN Y Q, WANG C, MO J L, et al. Review of application of mesoporous molecular sieves in deep hydrodesulfurization of oil products[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 743-752. | |
54 | SHELIMOV B, LAMBERT J F, CHE M, et al. Initial steps of the alumina-supported platinum catalyst preparation: a molecular study by 195Pt NMR, UV-visible, EXAFS, and Raman spectroscopy[J]. Journal of Catalysis, 1999, 185(2): 462-478. |
55 | DU M X, QIN Z F, HUI G, et al. Enhancement of Pd-Pt/Al2O3 catalyst performance in naphthalene hydrogenation by mixing different molecular sieves in the support[J]. Fuel Processing Technology, 2010, 91(11): 1655-1661. |
56 | FU W Q, ZHAO W B, ZHANG L, et al. ZSM-5 microspheres consisting of nanocrystals for preparing highly dispersed MoP clusters with good activity in phenanthrene hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17289-17299. |
57 | SIMON L J, OMMEN V J G, JENTYS A, et al. Sulfur tolerance of Pt/mordenites for benzene hydrogenation do Brønsted acid sites participate in hydrogenation?[J]. Catalysis Today, 2002, 73(1): 105-112. |
58 | DANG Y, LIU Y, FENG X, et al. Effect of dispersion on the adsorption of polycyclic aromatic hydrocarbons over the γ-Al2O3(110) surface[J]. Applied Surface Science, 2019, 486: 137-143. |
59 | KARIM W, SPREAFICO C, KLEIBERT A, et al. Catalyst support effects on hydrogen spillover[J]. Nature, 2017, 541(7635): 68-71. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |