Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 1048-1057.DOI: 10.16085/j.issn.1000-6613.2020-0547
• Resources and environmental engineering • Previous Articles Next Articles
Xingshe LIU1(), Yongjun LIU1(), Zhe LIU1, Pengfei LI1, Tingting ZHANG1, Xiaoqin SUN2
Received:
2020-04-09
Revised:
2020-09-08
Online:
2021-02-09
Published:
2021-02-05
Contact:
Yongjun LIU
刘兴社1(), 刘永军1(), 刘喆1, 李鹏飞1, 张婷婷1, 孙小琴2
通讯作者:
刘永军
作者简介:
刘兴社(1992—),男,博士研究生,研究方向为煤化工废水无害化处理理论与技术。E-mail:基金资助:
CLC Number:
Xingshe LIU, Yongjun LIU, Zhe LIU, Pengfei LI, Tingting ZHANG, Xiaoqin SUN. Research advances on recovery of oil, phenols, and ammonia in coal chemical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1048-1057.
刘兴社, 刘永军, 刘喆, 李鹏飞, 张婷婷, 孙小琴. 煤化工废水中油、酚、氨回收研究进展[J]. 化工进展, 2021, 40(2): 1048-1057.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0547
项目 | 数值 |
---|---|
COD/mg·L-1 | 15000~30000 |
pH | 8~10 |
BOD/mg·L-1 | 3000~4000 |
NH3-N/mg·L-1 | 3000~5000 |
挥发酚/mg·L-1 | 2000~4000 |
油类/mg·L-1 | 500~1000 |
色度/倍 | 100000 |
项目 | 数值 |
---|---|
COD/mg·L-1 | 15000~30000 |
pH | 8~10 |
BOD/mg·L-1 | 3000~4000 |
NH3-N/mg·L-1 | 3000~5000 |
挥发酚/mg·L-1 | 2000~4000 |
油类/mg·L-1 | 500~1000 |
色度/倍 | 100000 |
项目 | 数值 |
---|---|
COD/mg·L-1 | 20000~30000 |
pH | 8~10 |
脂肪酸/mg·L-1 | 2000~3500 |
NH3-N/mg·L-1 | 3000~9000 |
挥发酚/mg·L-1 | 2900~3900 |
不挥发酚/mg·L-1 | 1600~3600 |
硫化氢/mg·L-1 | 50~200 |
项目 | 数值 |
---|---|
COD/mg·L-1 | 20000~30000 |
pH | 8~10 |
脂肪酸/mg·L-1 | 2000~3500 |
NH3-N/mg·L-1 | 3000~9000 |
挥发酚/mg·L-1 | 2900~3900 |
不挥发酚/mg·L-1 | 1600~3600 |
硫化氢/mg·L-1 | 50~200 |
工艺 | 主要特点 | 处理效果 | 参考文献 |
---|---|---|---|
phenosolvan-CLL工艺 | 酚回收单元在氨回收单元之前;萃取剂酚为DIPE,采用逆流萃取技术 | 单元酚含量小于20μg/g,多元酚萃取率达到85%,总萃取率大于99%;游离氨含量小于50μg/g,COD含量小于3000mg/L | 付国忠等[ |
去除酸性气体-酚-氨的双塔工艺 | 酚回收单元在氨回收单元之前;先脱去酸性气体,接着萃取,最后在碱性条件下脱氨;萃取剂采用DIPE | 进水水质:挥发酚2900~3900mg/L;非挥发性酚类1600~3600mg/L,挥发性氨3000~9000mg/L;非挥发性氨1500~4000mg/L;COD 20000~30000mg/L。 | Yu等[ |
出水水质:挥发酚>600mg/L;非挥发性酚类 >600mg/L,挥发性氨50~100mg/L;非挥发性氨200~300mg/L;COD>6000mg/L | |||
去除酸性气体-氨-酚的单塔工艺 | 氨回收单元在酚回收单元之前;废水分两股进脱酸塔;萃取在酸性条件下进行;萃取剂为DIPE | 进水水质:总酚4800~6500mg/L;总氨6000~10000mg/L;COD 20000mg/L。 | Yu等[ |
出水水质:总酚800~900mg/L;总氨<200mg/L;COD<4000mg/L | |||
基于低压蒸汽的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;利用双塔完成氨的汽提与浓缩;在低压条件下汽提氨(0.1~0.3MPa),在中压条件下(0.4~0.5MPa),将富含氨的水再次汽提进行浓缩;全过程对中压流的要求显著减少 | 苯酚、总酚和COD的浓度分别降低至约15mg/L、240mg/L和小于2400mg/L。另外,新工艺实施后,总蒸汽的消耗量减少约20kg,在处理1t废水时,超过170kg的中压蒸汽可以用低压蒸汽来代替 | Gai等[ |
基于热集成的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;热集成了脱酸汽提塔和溶剂回收塔;酸性水汽提塔中部脱出的氨气作为热源与溶剂蒸馏塔和溶剂汽提塔进行热交换 | 出水酸性气体、氨、酚的浓度均可达到排放标准;与传统的去除酚-氨单塔工艺相比,运行成本费用可减少34%,年消费可节约30.8% | Gai等[ |
工艺 | 主要特点 | 处理效果 | 参考文献 |
---|---|---|---|
phenosolvan-CLL工艺 | 酚回收单元在氨回收单元之前;萃取剂酚为DIPE,采用逆流萃取技术 | 单元酚含量小于20μg/g,多元酚萃取率达到85%,总萃取率大于99%;游离氨含量小于50μg/g,COD含量小于3000mg/L | 付国忠等[ |
去除酸性气体-酚-氨的双塔工艺 | 酚回收单元在氨回收单元之前;先脱去酸性气体,接着萃取,最后在碱性条件下脱氨;萃取剂采用DIPE | 进水水质:挥发酚2900~3900mg/L;非挥发性酚类1600~3600mg/L,挥发性氨3000~9000mg/L;非挥发性氨1500~4000mg/L;COD 20000~30000mg/L。 | Yu等[ |
出水水质:挥发酚>600mg/L;非挥发性酚类 >600mg/L,挥发性氨50~100mg/L;非挥发性氨200~300mg/L;COD>6000mg/L | |||
去除酸性气体-氨-酚的单塔工艺 | 氨回收单元在酚回收单元之前;废水分两股进脱酸塔;萃取在酸性条件下进行;萃取剂为DIPE | 进水水质:总酚4800~6500mg/L;总氨6000~10000mg/L;COD 20000mg/L。 | Yu等[ |
出水水质:总酚800~900mg/L;总氨<200mg/L;COD<4000mg/L | |||
基于低压蒸汽的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;利用双塔完成氨的汽提与浓缩;在低压条件下汽提氨(0.1~0.3MPa),在中压条件下(0.4~0.5MPa),将富含氨的水再次汽提进行浓缩;全过程对中压流的要求显著减少 | 苯酚、总酚和COD的浓度分别降低至约15mg/L、240mg/L和小于2400mg/L。另外,新工艺实施后,总蒸汽的消耗量减少约20kg,在处理1t废水时,超过170kg的中压蒸汽可以用低压蒸汽来代替 | Gai等[ |
基于热集成的酚氨回收工艺 | 以去除酸性气体-氨-苯酚的单塔工艺为基础进行优化;热集成了脱酸汽提塔和溶剂回收塔;酸性水汽提塔中部脱出的氨气作为热源与溶剂蒸馏塔和溶剂汽提塔进行热交换 | 出水酸性气体、氨、酚的浓度均可达到排放标准;与传统的去除酚-氨单塔工艺相比,运行成本费用可减少34%,年消费可节约30.8% | Gai等[ |
工艺 | 萃取剂 | 总氨 /mg·L-1 | 总酚 /mg·L-1 | CO2 /mg·L-1 | pH |
---|---|---|---|---|---|
原水含量 | — | 6700~10200 | 5500~6500 | 3000~8000 | — |
原工艺处理后 | DIPE | 200~300 | 1000~1400 | 1500~2000 | 9~10.5 |
新工艺处理后 | MIBK | 100~250 | 350 | 极少 | 6~8 |
工艺 | 萃取剂 | 总氨 /mg·L-1 | 总酚 /mg·L-1 | CO2 /mg·L-1 | pH |
---|---|---|---|---|---|
原水含量 | — | 6700~10200 | 5500~6500 | 3000~8000 | — |
原工艺处理后 | DIPE | 200~300 | 1000~1400 | 1500~2000 | 9~10.5 |
新工艺处理后 | MIBK | 100~250 | 350 | 极少 | 6~8 |
1 | JIA Shengyong, HAN Hongjun, ZHUANG Haifeng, et al. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition[J]. Bioresource Technology, 2015, 192: 507-513. |
2 | GAI Hengjun, SONG Hongbing, XIAO Meng, et al. Conceptual design of a modified phenol and ammonia recovery process for the treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2016, 304: 621-628. |
3 | ZHAO Dongyan, Weijie LUN, WEI Junjie. Discussion on wastewater treatment process of coal chemical industry[J]. IOP Conference Series: Earth and Environmental Science, 2017, 100: 012067. |
4 | CUI Peizhe, Zihao MAI, YANG Siyu, et al. Integrated treatment processes for coal-gasification wastewater with high concentration of phenol and ammonia[J]. Journal of Cleaner Production, 2016, 142: 2218-2226. |
5 | GAI Hengjun, JIANG Yanbin, QIAN Yu, et al. Conceptual design and retrofitting of the coal-gasification wastewater treatment process[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 84-94. |
6 | 赵玉良, 吕江, 谢凡, 等. 煤热解废水的气浮除油技术[J]. 煤炭加工与综合利用, 2019, 236(3): 76-80. |
ZHAO Yuliang, Jiang LYU, XIE Fan, et al. Removal oil for coal pyrolysis wastewater by air-floation technology[J]. Coal Processing &Comprehensive Utilization, 2019, 236(3): 76-80. | |
7 | WANG Wei, HAN Hongjun. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater[J]. Bioresource Technology, 2012, 103(1): 95-100. |
8 | BANDE R M, PRASAD B, MISHRA I M, et al. Oil field effluent water treatment for safe disposal by electroflotation[J]. Chemical Engineering Journal, 2008, 137(3): 503-509. |
9 | 晏雅婧. 煤化工废水预处理除油脱酚技术[D]. 北京: 华北电力大学, 2017. |
YAN Yajing. Pretreatment technologies for removal of oil and phenol from coal chemical industry wastewater[D]. Beijing: North China Electric Power University, 2017. | |
10 | KARHU M, LEIVISKÄ, T, TANSKANEN J. Enhanced DAF in breaking up oil-in-water emulsions[J]. Separation and Purification Technology, 2014, 122: 231-241. |
11 | BELOPE M-A A-B. The design and performance of offshore gas/oil water separation processes[D]. London: University of Surrey, 2010. |
12 | 毕可军, 王瑞, 闫杰栋, 等. 煤化工废水除油技术探讨[J]. 化肥设计, 2015, 289(6): 9-12. |
BI Kejun, WANG Rui, YAN Jiedong, et al. Discussion on oil removal technology of coal chemical wastewater[J]. Chemical Fertilizer Design, 2015, 289(6): 9-12. | |
13 | 耿俊峰, 韩义军. 气浮技术在处理哈尔滨气化厂煤加压气化废水中的应用[J]. 煤炭技术, 2002, 21(2): 52-53. |
GENG Junfeng, HAN Yijun. Application of gas floatation technology in coal pressure gasification waste water at Harbin Gasification Plant[J]. Coal Technology, 2002, 21(2): 52-53. | |
14 | 李丹阳. 基于氮气气浮除油与改善煤化工废水生化处理效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
LI Danyang. Research on improvement of treatment effectiveness of coal chemical wastewater based on nitrogen flotation degreasing[D]. Harbin: Harbin Institute of Technology, 2013. | |
15 | HAN Hongjun, ZHAO Qian, XU Chunyan, et al. Coal gasification wastewater pretreatment with coagulation and N2 flotation combined system[J]. Journal of Harbin Institute of Technology, 2013, 20(5): 20-24. |
16 | 罗文. 混凝-气浮法处理煤化工废水的试验研究[J]. 山西化工, 2018, 38(3): 202-204. |
LUO Wen. Experimental study on coal chemical wastewater treatment by coagulating-gas-suspension method[J]. Shanxi Chemical Industry, 2018, 38(3): 202-204. | |
17 | 洪磊, 陆曦, 梁文, 等. 用于煤化工高浓污水的复配除油破乳剂及工艺研究[J]. 水处理技术, 2016, 42(3): 56-59. |
HONG Lei, LU Xi, LIANG Wen, et al. Compound degreasing demulsifier for high-concentration wastewater in the coal chemical industry and its process research[J]. Technology of Water Treatment, 2016, 42(3): 56-59. | |
18 | YANG Sheng, MA Donghui, CUI Peizhe. Liquid-liquid equilibrium data and correlation for the quaternary systems water + polyphenol (hydroquinone, catechol, and resorcinol) + methyl isobutyl ketone + methylbenzene[J]. Journal of Chemical & Engineering Data, 2018, 63: 63-68. |
19 | 陈赟, 王慧敏, 熊康宁, 等. 甲基异丁基甲酮-苯酚-邻苯二酚-水液液相平衡数据测定与关联[J]. 华南理工大学学报(自然科学版), 2017, 45(10): 34-38. |
CHEN Yun, WANG Huimin, XIONG Kangning, et al. Determination and correlation of liquid-liquid equilibrium data of methyl isobutyl ketone-phenol-catechol-water[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(10): 34-38. | |
20 | CHEN Yun, WANG Huimin, Ran LYU, et al. Liquid-liquid equilibrium for ternary systems, methyl isobutyl ketone +(catechol, resorcinol and hydroquinone) + water at 333.15K, 343.15K and 353.15K[J]. Fluid Phase Equilibria, 2017, 433: 206-211. |
21 | 吕冉. 甲基(异)丙基甲酮萃取高浓煤化工含酚废水中酚类物质液液相平衡研究及过程模拟[D]. 广州: 华南理工大学, 2017. |
Ran LYU. Liquid-liquid phase equilibrium research and process simulation of extraction of highly concentrated phenols from coal chemical industry wastewater with methyl iso-or n-propyl ketone[D]. Guangzhou: South China University of Technology, 2017. | |
22 | WANG Huimin, LI Libo, Ran LYU, et al. Measurement and correlation of liquid-liquid equilibria for the ternary methylisobutyl ketone+ phenol+water system at (333.15, 343.15 and 353.15)K under atmospheric pressure[J]. Journal of Solution Chemistry, 2016, 45(6): 875-884. |
23 | CHEN Yun, WANG Huimin, Ran LYU, et al. Liquid-liquid equilibria for methyl isobutyl ketone + cresols + water at 333.15K, 343.15K and 353.15K: experimental results and data corre-lation[J]. Fluid Phase Equilibria, 2016, 427: 291-296. |
24 | YANG Chufen, QIAN Yu, ZHANG Lijuan, et al. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater[J]. Chemical Engineering Journal, 2006, 117(2): 179-185. |
25 | YANG Chufen, GUO Jianwei, YANG Shiying, et al. Process simulation and optimization on phenol extraction for coal-gasification wastewater[J]. Advanced Materials Research, 2012, 550/551/552/553: 2349-2353. |
26 | YANG Chufen, YANG Shiying, QIAN Yu, et al. Simulation and operation cost estimate for phenol extraction and solvent recovery process of coal-gasification wastewater[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 12108-12115. |
27 | WANG Huimin, WANG Zhuo, LI Libo, et al. Ternary and quaternary liquid-liquid equilibria for systems of methyl butyl ketone +water + hydroquinone + phenol at 313.2K and atmospheric pressure[J]. Journal of Chemical & Engineering Data, 2016, 61: 1540-1546. |
28 | 刘东. 高浓煤化工废水中酚和有机羧酸酮萃取的相平衡测定及工艺模拟研究[D]. 广州: 华南理工大学, 2016. |
LIU Dong. The phase equilibria study and process simulation of extracting phenols and carboxylic acids from highly concentrated wastewaters in coal chemical industry with ketones as the extractant[D]. Guangzhou: South China University of Technology, 2016. | |
29 | 章丽萍, 戴瑾, 魏含宇, 等. 煤化工含酚废水高效萃取研究[J]. 煤炭科学技术, 2019, 47(6): 219-224. |
ZHANG Liping, DAI Jin, WEI Hanyu, et al. Study on high efficiency extraction of phenolic-containing wastewater from coal chemical industry[J]. Coal Science and Technology, 2019, 47(6): 219-224. | |
30 | FENG Yirong, SONG Hongbing, XIAO Meng, et al. Development of phenols recovery process from coal gasification wastewater with mesityl oxide as a novel extractant[J]. Journal of Cleaner Production, 2017, 166: 1314-1322. |
31 | HAO Xiaogang, PRITZKER M, FENG Xianshe. Use of pervaporation for the separation of phenol from dilute aqueous solutions[J]. Journal of Membrane Science, 2009, 335(2): 96-102. |
32 | ZHOU Haoli, SHI Ronghao, JIN Wanqin. Novel organic-inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution[J]. Separation and Purification Technology, 2014, 127: 61-69. |
33 | YAO Jie, HE Zhiru, LUO Anguo, et al. Supported liquid membrane extraction to treat coal gasification wastewater containing high concentrations phenol[J]. Journal of Harbin Institute of Technology, 2012, 19(1): 55-57. |
34 | LI Dan, YAO Jie, SUN Hao, et al. Preparation and characterization of SiO2/PDMS/PVDF composite membrane for phenols recovery from coal gasification wastewater in pervaporation[J]. Chemical Engineering Research & Design, 2018, 132: 424-435. |
35 | FENG Dachun, YU Zhenjiang, CHEN Yun, et al. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 5816-5823. |
36 | SUN Yetao, GUO Wali. Research on pretreatment of high concentrated ammonia-nitrogen wastewater from coal gasification process by air stripping[C]// International Conference on Intelligent Computation Technology & Automation. IEEE Computer Society, 2011. |
37 | 张璐, 杨忆新, 罗明生, 等. 天然沸石去除煤化工废水中氨氮的研究[J]. 工业水处理, 2018, 38(7): 46-49. |
ZHANG Lu, YANG Yixin, LUO Mingsheng, et al. Research on natural zeolite for the removal of ammonia nitrogen from coal chemical wastewater[J]. Industrial Water Treatment, 2018, 38(7): 46-49. | |
38 | 杨楠. 磷酸铵镁结晶法去除和回收煤气化废水中的氨氮[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
YANG Nan. Removal and recovery of ammonia nitrogen from coal gasification wastewater with magnesium ammonium phosphate crystallization[D]. Harbin: Harbin Institute of Technology, 2009. | |
39 | 付国忠, 朱继承. 鲁奇FBDB煤气化技术及其最新进展[J]. 中外能源, 2012, 17(1): 74-79. |
FU Guozhong, ZHU Jicheng. Lurgi FBDB coal gasification technology and latest advances[J]. Sino-Global Energy, 2012, 17(1): 74-79. | |
40 | YU Zhenjiang, CHEN Yun, FENG Dachun, et al. Process development, simulation, and industrial implementation of a new coal-gasification wastewater treatment installation for phenol and ammonia removal[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2874-2881. |
41 | GAI Hengjun, FENG Yirong, LIN Kaiqiang, et al. Heat integration of phenols and ammonia recovery process for the treatment of coal gasification wastewater[J]. Chemical Engineering Journal, 2017, 327: 1093-1101. |
42 | 吴限. 煤化工废水处理技术面临的问题与技术优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
WU Xian. Research on problems facing and technology optimization of coal chemical industry wastewater treatment technology[D]. Harbin: Harbin Institute of Technology, 2016. | |
43 | VAN DYK J C, KEYSER M J, COERTZEN M. Syngas production from South African coal sources using Sasol-Lurgi gasifiers[J]. International Journal of Coal Geology, 2006, 65(3/4): 243-253. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[3] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[4] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[5] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[6] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[7] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[8] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[9] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[10] | HU Yafei, FENG Ziping, TIAN Jiayao, HUANG Chong, SONG Wenji. Energy saving simulation and operation economic analysis of fuel driven non-electric heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1217-1227. |
[11] | ZHANG Qunli, HUANG Haotian, ZHANG Lin, ZHAO Wenqiang, ZHANG Qiuyue. Analysis of condensation waste heat recovery system of spray flue gas source heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 650-657. |
[12] | WANG Yibin, FENG Jingwu, TAN Houzhang, LI Liangyu. Research progress on phosphorus speciation transformation and recovery during thermal chemical conversion of municipal sewage sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 985-999. |
[13] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
[14] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
[15] | BAO Jin, SONG Yonghui, DONG Ping, LI Yifan, ZHU Rongyan, LIAO Long. Extraction and enrichment of iron ions in cyanide tailings electrolyte [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 517-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |