Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5293-5301.DOI: 10.16085/j.issn.1000-6613.2021-0800
• Special column:Resource recycling and value-added utilization • Previous Articles Next Articles
CAO Limei(), QIU Zhaofu, ZHANG Wei, YANG Ji()
Received:
2021-04-15
Revised:
2021-05-27
Online:
2021-10-25
Published:
2021-10-10
Contact:
YANG Ji
通讯作者:
杨骥
作者简介:
曹礼梅(1982—),女,副教授,研究方向为工业废气污染控制、固体废弃物处置。E-mail:基金资助:
CLC Number:
CAO Limei, QIU Zhaofu, ZHANG Wei, YANG Ji. Pollution and utilization of chemical industry spent catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5293-5301.
曹礼梅, 邱兆富, 张巍, 杨骥. 化工废催化剂污染特征及资源化途径[J]. 化工进展, 2021, 40(10): 5293-5301.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0800
名称 | 生产工艺 | 所用催化剂 | 废催化剂成分 | 废催化剂处置 | 废催化剂产量 | 参考 文献 |
---|---|---|---|---|---|---|
甲醇 | 低压工艺 | 铜锌系催化剂 | ZnO 39.29%, CuO 39.04% | 湿法回收铜锌 | 3000t | [ |
甲基叔丁基醚(MTB) | 异丁烯、甲醇催化 | 苯乙烯-二乙烯苯共聚物 | Na+ 64%,Fe2+ 32%,Ca2+和Mg2+ 3% | 填埋 | 350t | [ |
硫酸 | 催化吸收制备硫酸 | V2O5等钒类催化剂 | V 7.5%,K 9.1%,S 10.2%,Si 23.2% | 回收V2O5 | 4500t | [ |
丙烯腈 | 丙烯氨氧化 | 磷钼铋系或锑铁系催化剂 | Bi 1%~5%,Ni 1%~10%,Mo 5%~21% | 湿法回收 | 115t | [ |
苯胺 | 硝基苯催化加氢法 | 铜/硅、镍或铂/钯为催化剂 | Cu 15%~25% | 湿法回收 | 150t | [ |
邻甲酚 | 甲苯氯化水解法 | 钒系催化剂 | V2O5 | 湿法回收 | 100t | [ |
名称 | 生产工艺 | 所用催化剂 | 废催化剂成分 | 废催化剂处置 | 废催化剂产量 | 参考 文献 |
---|---|---|---|---|---|---|
甲醇 | 低压工艺 | 铜锌系催化剂 | ZnO 39.29%, CuO 39.04% | 湿法回收铜锌 | 3000t | [ |
甲基叔丁基醚(MTB) | 异丁烯、甲醇催化 | 苯乙烯-二乙烯苯共聚物 | Na+ 64%,Fe2+ 32%,Ca2+和Mg2+ 3% | 填埋 | 350t | [ |
硫酸 | 催化吸收制备硫酸 | V2O5等钒类催化剂 | V 7.5%,K 9.1%,S 10.2%,Si 23.2% | 回收V2O5 | 4500t | [ |
丙烯腈 | 丙烯氨氧化 | 磷钼铋系或锑铁系催化剂 | Bi 1%~5%,Ni 1%~10%,Mo 5%~21% | 湿法回收 | 115t | [ |
苯胺 | 硝基苯催化加氢法 | 铜/硅、镍或铂/钯为催化剂 | Cu 15%~25% | 湿法回收 | 150t | [ |
邻甲酚 | 甲苯氯化水解法 | 钒系催化剂 | V2O5 | 湿法回收 | 100t | [ |
方法类别 | 优点 | 缺点 |
---|---|---|
火法 | 工艺简单、回收率高 | (1)焚烧过程会产生大量有害气体形成二次污染; (2)排放大量浮渣,增加了二次固废的产生,部分金属被废弃; (3)其他有色金属回收率较低; (4)能耗大,处理设备昂贵,经济效益低 |
湿法 | 能耗低、工艺过程易监控、贵金属沉淀易进行 | (1)产生的废水和残渣数量过大; (2)面临浸出过的载体处置问题; (3)贵金属富集浓度较低 |
方法类别 | 优点 | 缺点 |
---|---|---|
火法 | 工艺简单、回收率高 | (1)焚烧过程会产生大量有害气体形成二次污染; (2)排放大量浮渣,增加了二次固废的产生,部分金属被废弃; (3)其他有色金属回收率较低; (4)能耗大,处理设备昂贵,经济效益低 |
湿法 | 能耗低、工艺过程易监控、贵金属沉淀易进行 | (1)产生的废水和残渣数量过大; (2)面临浸出过的载体处置问题; (3)贵金属富集浓度较低 |
1 | LIU Chuan, SUN Shuchen, ZHU Xiaoping, et al. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: a mini review[J]. Waste Management & Research, 2021, 39(1): 43-52. |
2 | 李玉林, 吴彩霞. 催化剂在化学工业中的重要作用[J]. 内蒙古石油化工, 2008, 34(14): 45-47. |
LI Yulin, WU Caixia. The important role of a catalyst in chemical industry[J]. Inner Mongulia Petrochemical Industry, 2008, 34(14): 45-47. | |
3 | 金杏妹. 工业应用催化剂[M]. 上海: 华东理工大学出版社, 2004. |
JIN Xingmei. ndustrial application catalyst[M]. Shanghai: East China University of Science and Technology Press, 2004. | |
4 | 孙锦宜. 工业催化剂的失活与再生[M]. 北京: 化学工业出版社, 2006. |
SUN Jinyi. Deactivation and regeneration of industrial catalysts[M]. Beijing: Chemical Industry Press, 2006. | |
5 | 李传江, 丁惠平. 从废弃甲醇合成催化剂中回收氯化亚铜和氧化锌的新工艺研究[J]. 化肥设计, 2011, 49(2): 49-53. |
LI Chuanjiang, DING Huiping. Study on new process for recovering cuprous chloride and zinc oxide from spent catalyst of methanol synthesis[J]. Chemical Fertilizer Design, 2011, 49(2): 49-53. | |
6 | 王旭波. MTBE装置催化剂寿命分析及对策[J]. 石油化工应用, 2008, 27(4): 109-111, 114. |
WANG Xubo. Analysis and countermeasures of catalyst life in mtbe unit[J]. Petrochemical Industry Application, 2008, 27(4): 109-111, 114. | |
7 | ROMANOVSKAIA E, ROMANOVSKI V, KWAPINSKI W, et al. Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: sustainable approach[J]. Hydrometallurgy, 2021, 200: 105568. |
8 | MANGINI L F K, VALT R B G, Maria José Jerônimo de Santana Ponte, et al. Vanadium removal from spent catalyst used in the manufacture of sulfuric acid by electrical potential application[J]. Separation and Purification Technology, 2020, 246: 116854. |
9 | 黄金霞, 朱海林, 陆书来. 2018年丙烯腈生产与市场分析及技术进展[J]. 化学工业, 2019, 37(3): 24-31. |
HUANG Jinxia, ZHU Hailin, LU Shulai. Acrylonitrile production and market for 2018[J]. Chemical Industry, 2019, 37(3): 24-31. | |
10 | 张飞宁, 仵静, 李飞. 硝基苯液相催化加氢制苯胺催化剂研究进展[J]. 工业催化, 2021, 29(2): 28-32. |
ZHANG Feining, WU Jing, LI Fei. New progress on liquid phase catalytic hydrogenation of nitrobenzene to aniline[J]. Industrial Catalysis, 2021, 29(2): 28-32. | |
11 | KUNJACHAN Christy, KURIAN Manju. Mixed cerium nanooxides as efficient and selective C-alkylation catalysts for gas phase methylation of phenol[J]. Journal of Chemical Sciences, 2020, 132(1): 55. |
12 | 刘健, 邱兆富, 杨骥, 等. 我国石油化工废催化剂的综合利用[J]. 中国资源综合利用, 2015, 33(6): 38-42. |
LIU Jian, QIU Zhaofu, YANG Ji, et al. The comprehensive utilization of spent petrochemical catalysts in China[J]. China Resources Comprehensive Utilization, 2015, 33(6): 38-42. | |
13 | 赵骧. 废催化剂回收技术与现状[J]. 中氮肥, 1989(1): 1-16, 28. |
ZHAO Xiang. Current status of waste catalyst recovery technology[J]. M-sized Nitrogenous Fertilizer Progress, 1989(1): 1-16, 28. | |
14 | 何连生, 祝超伟, 席北斗, 等. 重金属污染调查与治理技术[M]. 北京: 中国环境出版社, 2013. |
HE Liansheng, ZHU Chaowei, XI Beidou, et al. Heavy metal pollution investigation and treatment technology[M]. Beijing: China Environment Press, 2013. | |
15 | 范拴喜. 土壤重金属污染与控制[M]. 北京: 中国环境科学出版社, 2011. |
FAN Shuanxi. Soil heavy metal pollution and control[M]. Beijing: China Environment Science Press, 2011. | |
16 | 孙锦宜, 刘惠青. 废催化剂回收利用[M]. 北京: 化学工业出版社, 2001. |
SUN Jinyi, LIU Huiqing. Waste catalyst recycling[M]. Beijing: Chemical Industry Press, 2001. | |
17 | 国家危险废物名录(2021版) [EB/OL]. [2021-04-15]. . |
National list of hazardous wastes (2021 edition) [EB/OL]. [2021-04-15]. . | |
18 | 全国人民代表大会常务委员会. 中华人民共和国固体废物污染环境防治法(最新修正版)[M]. 北京:法律出版社,2020. |
Standing Committee of the National People’s Congress of the People’s Republic of China. Law of the People’s Republic of China on the prevention and control of solid waste pollution (Latest revision)[M]. Beijing:Law Press·China,2020. | |
19 | 倪黎, 梁维军, 王红萍. 废催化裂化催化剂的减量与处理处置技术现状进展[J]. 石油化工, 2018, 47(11): 1260-1267. |
NI Li, LIANG Weijun, WANG Hongping. Progresses in reduction and treatment and disposal of spent FCC catalyst[J]. Petrochemical Technology, 2018, 47(11): 1260-1267. | |
20 | WU Liushun, DAI Chao, WANG Haichuan, et al. Leaching of vanadium, potassium, and iron from spent catalyst of the manufacture of sulfuric acid[J]. Journal of Materials Research and Technology, 2021, 11: 905-913. |
21 | 刘焕群. 国外废催化剂回收利用[J]. 中国资源综合利用, 2000, 18(12): 35-37. |
LIU Huanqun. Recycling and utilization of waste catalysts abroad[J]. China Resources Comprehensive Utilizatiodn, 2000, 18(12): 35-37. | |
22 | 朱岩. 废催化剂回收利用现状综述[J]. 常州工程职业技术学院学报, 2010(4): 44-50. |
ZHU Yan. A summary of the status quo of waste catalyst recycling[J]. Journal of Changzhou Institute of Engineering Technology, 2010(4): 44-50. | |
23 | 曾瑞. 浅谈SCR废催化剂的回收再利用[J]. 中国环保产业, 2013(2): 39-42. |
ZENG Rui. Reclamation and recycling of SCR waste catalyzer[J]. China Environmental Protection Industry, 2013(2): 39-42. | |
24 | 孙晓雪, 刘仲能, 杨为民. 废弃负载型加氢处理催化剂金属回收技术进展[J]. 化工进展, 2016, 35(6): 1894-1904. |
SUN Xiaoxue, LIU Zhongneng, YANG Weimin. Research progress of metal recovery in spent supported hydroprocessing catalyst[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1894-1904. | |
25 | 王世芬, 徐作涛. 废催化剂回收利用现状及对策[J]. 能源研究与管理, 2015(2): 118-121. |
WANG Shifen, XU Zuotao. Current situation and countermeasures on recycling technology of waste catalysts[J]. Energy Research and Management, 2015(2): 118-121. | |
26 | 马致远, 刘勇, 周吉奎, 等. 响应曲面法优化废催化剂中微波浸出钒的工艺[J]. 中国有色金属学报, 2019, 29(6): 1308-1315. |
MA Zhiyuan, LIU Yong, ZHOU Jikui, et al. Optimization of microwave assisted leaching of vanadium from spent catalyst based on response surface methodology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1308-1315. | |
27 | 高首坤, 陈正, 卢超, 等. 火法工艺对废催化剂中铂、钯回收的试验研究[J]. 甘肃冶金, 2020, 42(3): 16-18, 22. |
GAO Shoukun, CHEN Zheng, LU Chao, et al. Experimental study on recovery of platinum and palladium from waste catalyst by pyrolysis process[J]. Gansu Metallurgy, 2020, 42(3): 16-18, 22. | |
28 | 相亚波, 丁国栋, 饶超, 等. 废钯氧化铝催化剂中钯的回收工艺研究[J]. 中国资源综合利用, 2020, 38(7): 5-6, 28. |
XIANG Yabo, DING Guodong, RAO Chao, et al. Study on recovery technology of palladium in waste palladium alumina catalyst[J]. China Resources Comprehensive Utilization, 2020, 38(7): 5-6, 28. | |
29 | 马致远, 刘勇, 周吉奎, 等. 碱式焙烧-水浸法回收废催化剂中钒钼的试验研究[J]. 矿冶, 2019, 28(2): 82-86. |
MA Zhiyuan, LIU Yong, ZHOU Jikui, et al. Recovery of vanadium and molybdenum from spent catalyst by alkaline roasting and water leaching[J]. Mining and Metallurgy, 2019, 28(2): 82-86. | |
30 | 徐懋, 黄宪法, 桂林. 废钒催化剂的综合回收新工艺[J]. 稀有金属与硬质合金, 2014, 42(6): 14-15, 60. |
XU Mao, HUANG Xianfa, GUI Lin. New process of comprehensive recovery of waste vanadium catalyst[J]. Rare Metals and Cemented Carbides, 2014, 42(6): 14-15, 60. | |
31 | ZHANG Qijun, WU Yufeng, YUAN Haoran. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: a review[J]. Resources, Conservation and Recycling, 2020, 161: 104983. |
32 | AKCIL A, VEGLIÒ F, FERELLA F, et al. A review of metal recovery from spent petroleum catalysts and ash[J]. Waste Management, 2015, 45: 420-433. |
33 | 李金辉, 周友元, 熊道陵, 等. 硫化法分离红土矿中镍铁的研究[J]. 矿冶工程, 2010, 30(1): 47-50. |
LI Jinhui, ZHOU Youyuan, XIONG Daoling, et al. Study on separating nickel and iron in laterite by sulphidizing method[J]. Mining and Metallurgical Engineering, 2010, 30(1): 47-50. | |
34 | 郭洪生, 倪雪梅, 叶勇. 氧化铝载体的回收[J]. 沈阳化工, 1995(2): 58-59, 44. |
GUO Hongsheng, NI Xuemei, YE Yong. Recovery of alumina carrier[J]. Shenyang Chemical Industry, 1995(2): 58-59, 44. | |
35 | 潘泽琳, 刘爱萍. 废催化剂回收Al2O3料的炼铝应用[J]. 湖南冶金, 1994(1): 28-30. |
PAN Zelin, LIU Aiping. Application of aluminum smelting for recovery of Al2O3 from waste catalyst[J]. Hunan Metallurgy, 1994(1): 28-30. | |
36 | 徐志兵, 孔学军, 赵安祥. 废催化剂回收三氧化二铝的初步研究[J]. 安庆师范学院学报(自然科学版), 2004(1): 57-58. |
XU Zhibing, KONG Xuejun, ZHAO Anxiang. Preliminary studying of recycling aluminum from waste catalyst[J]. Journal of Anqing Teachers College(Natural Science), 2004(1): 57-58. | |
37 | FU Haihui, CHEN Yan, LIU Tingting, et al. Research on hazardous waste removal management: Identification of the hazardous characteristics of fluid catalytic cracking spent catalysts[J]. Molecules, 2021, 26(8): 2289. |
38 | SATHISKUMAR Chinnusamy, MEESALA Lavanya, KUMAR Pramod, et al. Waste to wealth: spent catalyst as an efficient and stable bifunctional oxygen electrocatalyst for zinc-air batteries[J]. Sustainable Energy & Fuels, 2021, 5(5): 1406-1414. |
39 | RUI Zebao, WU Shangren, JI Hongbing, et al. Reactivation and reuse of platinum-based spent catalysts for combustion of exhaust organic gases[J]. Chemical Engineering & Technology, 2015, 38(3): 409-415. |
40 | BASALDELLA E I, PALANDINO J C, SOLARI M, et al. Exhausted fluid catalytic cracking catalysts as raw materials for zeolite synthesis[J]. Applied Catalysis B: Environmental, 2006, 66(3/4): 186-191. |
41 | ANSARI Palliyarayil, PREMKUMAR Selvarajan, PAVAN Seethur Prakash, et al. An experimental and theoretical investigation on the oxidation of CO over Pd/C derived from the spent Pd catalyst[J]. ChemCatChem, 2021, 13(5): 1326-1339. |
42 | 孟璇, 李良, 萨帕德, 等.废树脂催化剂制活性炭及其吸附脱除液化气中含硫化合物研究[J]. 石油炼制与化工, 2021, 52(1): 59-64. |
MENG Xuan, LI Liang, GUVANCH Sapargeldiyev, et al. Preparation of activated carbon from dwactived resin catalyst and its application in adsorption desulfurization for LPG[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 59-64. | |
43 | 刘祺, 李本高, 陈妍. 催化裂化废催化剂催化臭氧氧化含酚污水研究[J]. 石油炼制与化工, 2019, 50(12): 74-78. |
LIU Qi, LI Bengao, CHEN Yan. Catalytic ozonation of wastewater containing phenols by waste FCC catalyst[J]. Petroleum Processing and Petrochemicals, 2019, 50(12): 74-78. |
[1] | ZHANG Tingting, ZUO Xuqian, TIAN Lingdi, WANG Shimeng. Construction method of volatile organic compounds emission inventory and factor database in chemical industry park [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 549-557. |
[2] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[3] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[4] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[5] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[6] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[7] | XU Lijie, LIU Haojie, XUE Rui, ZHOU Xiaoli, ZHOU Jie, QIAN Xiujuan, DONG Weiliang, JIANG Min. Interdisciplinary assistance for biological recycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5029-5036. |
[8] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[9] | MU Yanjun, SONG Qianqian, WANG Hongqiu, FU Kaimei, XUE Jing, WANG Chunjiao. Strategy and inspiration of low-carbon development in the USA petrochemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2797-2805. |
[10] | HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. |
[11] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[12] | WANG Yue, ZHAO Qinfeng, ZHANG Zhanquan, LEI Junwei, HOU Yuandong. Plastic waste recycling by pyrolysis at home and abroad under the background of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1470-1478. |
[13] | CHEN Huan, WAN Kun, NIU Bo, ZHANG Yayun, LONG Donghui. Recent progresses in chemical recycling and upcycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469. |
[14] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
[15] | GAN Fengli, JIANG Xia, CHANG Yulong, JIN Ziheng, WANG Hualin, SHI Jingwei. Exploration of carbon neutral technology path in petrochemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1364-1375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |