Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 164-172.DOI: 10.16085/j.issn.1000-6613.2020-0478
• Energy processes and technology • Previous Articles Next Articles
Yuehua LIU1,2(), Ju SHANGGUAN1,2(), Shoujun LIU1,2,3, Song YANG2,3, Wenguang DU1,2
Received:
2020-03-30
Online:
2021-01-12
Published:
2021-01-05
Contact:
Ju SHANGGUAN
刘月华1,2(), 上官炬1,2(), 刘守军1,2,3, 杨颂2,3, 杜文广1,2
通讯作者:
上官炬
作者简介:
刘月华(1996—),女,硕士研究生,研究方向为煤炭清洁高效利用。E-mail:基金资助:
CLC Number:
Yuehua LIU, Ju SHANGGUAN, Shoujun LIU, Song YANG, Wenguang DU. Nitrogen migration regarding the addition of iron-Ni composite additives during coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 164-172.
刘月华, 上官炬, 刘守军, 杨颂, 杜文广. 铁镍复合助剂对煤热解过程中氮迁移规律的影响[J]. 化工进展, 2021, 40(1): 164-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0478
工业分析/% | 元素分析/% | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | Cad | Had | Nad | St,ad | |
0.82 | 10.6 | 29.50 | 71.80 | 4.70 | 1.33 | 2.82 |
工业分析/% | 元素分析/% | ||||||
---|---|---|---|---|---|---|---|
Mad | Aad | Vad | Cad | Had | Nad | St,ad | |
0.82 | 10.6 | 29.50 | 71.80 | 4.70 | 1.33 | 2.82 |
样品 | SBET/m2·g-1 | 孔径/nm | 孔体积/mL·g-1 |
---|---|---|---|
肥煤 | 1.1140 | 20.84 | 0.0104 |
乙醇处理肥煤 | 1.4480 | 31.19 | 0.0162 |
样品 | SBET/m2·g-1 | 孔径/nm | 孔体积/mL·g-1 |
---|---|---|---|
肥煤 | 1.1140 | 20.84 | 0.0104 |
乙醇处理肥煤 | 1.4480 | 31.19 | 0.0162 |
名称 | 总氮/% | N-5/% | N-6/% | N-Q/% | N-X/% |
---|---|---|---|---|---|
肥煤 | 1.34 | 0.75 | 0.31 | 0.20 | 0.09 |
肥煤焦炭-1000℃ | 0.68 | 0.49 | 0.06 | 0.13 | 0 |
肥煤+FeNi焦炭-1000℃ | 0.54 | 0 | 0.12 | 0.28 | 0.14 |
名称 | 总氮/% | N-5/% | N-6/% | N-Q/% | N-X/% |
---|---|---|---|---|---|
肥煤 | 1.34 | 0.75 | 0.31 | 0.20 | 0.09 |
肥煤焦炭-1000℃ | 0.68 | 0.49 | 0.06 | 0.13 | 0 |
肥煤+FeNi焦炭-1000℃ | 0.54 | 0 | 0.12 | 0.28 | 0.14 |
1 | 阙志刚, 吴胜利, 王金生, 等. 无烟煤代替焦粉燃烧行为及对烧结NOx排放的影响[J]. 钢铁, 2019, 54(10): 23-29. |
QUE Zhigang, WU Shengli, WANG Jinsheng, et al. Combustion behavior of anthracite substituting for coke and its effects on NOx emission in sintering process[J]. Iron and Steel, 2019, 54(10): 23-29. | |
2 | 赵珊. 中国煤炭资源现状及建议[J]. 广州化工, 2014, 42(15): 52-53. |
ZHAO Shan. The status and suggestions of coal resources in China[J]. Guangzhou Chemical Industry, 2014, 42(15): 52-53. | |
3 | 霍沫霖, 赵佳, 徐朝, 等. 中国散烧煤消费地图及影响因素研究[J]. 中国电力, 2018, 51(1): 139-146. |
HUO Molin, ZHAO Jia, XU Chao, et al. China scattered coal consumption map and influence factors[J]. Electric Power, 2018, 51(1): 139-146. | |
4 | 胡月. 论我国煤炭资源利用的环境影响现状及对策[J]. 山西焦煤科技, 2015, 39(7): 45-48. |
HU Yue. Discussion on current situation of environmental influence and countermeasures on coal resources utilization in our country[J]. Shanxi Coking Coal Science & Technology, 2015, 39(7): 45-48. | |
5 | XUE B, MITCHELL B, GENG Y, et al. A review on China’s pollutant emissions reduction assessment[J]. Ecological Indicators, 2014, 38: 272-278. |
6 | LI C Z, LI L T. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel, 2000, 79(15): 1899-1906. |
7 | ZHANG L, WEN X, LEI Z, et al. Study on the mechanism of a manganese-based catalyst for catalytic NOx flue gas denitration[J]. Aip Advances, 2018, 8(4): 045004. |
8 | WU Z, SUGIMOTO Y, KAWASHIMA H, et al. The influence of mineral matter and catalyst on nitrogen release during slow pyrolysis of coal and related material[J]. Energy & Fuels, 2002, 16(2): 451-456. |
9 | ZHIJUN S, SHENG S, XING N, et al. The investigation of NOx formation and reduction during O2/CO2 combustion of raw coal and coal char[J]. Energy Procedia, 2015, 66: 69-72. |
10 | 谢建军, 杨学民, 吕雪松, 等. 煤热解过程中硫氮分配及迁移规律研究进展[J]. 化工进展, 2004, 23(11): 1214-1218. |
XIE Jianjun, YANG Xuemin, Xuesong LYU, et al. Progress on transformation behavior of sulfur and nitrogen during coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2004, 23(11): 1214-1218. | |
11 | FENG J, LI C Z, PRATT K C, et al. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass[J]. Fuel, 2001, 80(15): 2131-2138. |
12 | LIU L, KUMAR S, WANG Z, et al. Catalytic effect of metal chlorides on coal pyrolysis and gasification Part I. Combined TG-FTIR study for coal pyrolysis[J]. Thermochimica Acta, 2017, 655: 331-336. |
13 | WANG M Y, JIN L J, LI Y, et al. In situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts[J]. Energy & Fuels, 2017, 31(9). |
14 | AMIN M N, LI Y, RAZZAQ R, et al. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two staged bed reactor[J]. Journal of Analytical & Applied Pyrolysis, 2016, 118: 54-62. |
15 | NAOTO T, YUSUKE M, YUUKI M, et al. Coprocessing of pyrolytic nitrogen removal of low-rank coals and reduction of limonite ore[J]. Energy & Fuels, 2017, 31(4): 3885-3891. |
16 | MORI H, ASAMI K, OHTSUKA Y. Role of iron catalyst in fate of fuel nitrogen during coal pyrolysis[J]. Energy & Fuels, 1996, 10(4): 1022-1027. |
17 | 顾颖, 刘小伟, 乔瑜, 等. 煤热解过程中FeCl3对氮分布规律的影响[J]. 中国电机工程学报, 2011, 31(35): 59-64. |
GU Ying, LIU Xiaowei, QIAO Yu, et al. Effect of FeCl3 on nitrogen distribution in coal pyrolysis[J]. Proceedings of the CSEE, 2011, 31(35): 59-64. | |
18 | HAN J Z, LIU X X, YUE J R, et al. Catalytic upgrading of in situ coal pyrolysis tar over Ni char catalyst with different additives[J]. Energy & Fuels, 2014, 28(8): 4934-4941. |
19 | 何立模, 胡松, 汪一, 等. 改性镍基催化剂催化甲苯重整与积碳特性研究[J]. 工程热物理学报, 2016, 37(5): 183-189. |
HE Limo, HU Song, WANG Yi, et al. Catalytic performance and coke characterization over modified Ni-based catalysts for steam reforming of toluene[J]. Journal of Engineering Thermophysics, 2016, 37(5): 183-189. | |
20 | 徐明艳, 常丽萍. 热解过程中煤氮定向转化为N2的研究[J]. 煤化工, 2005(6): 40-44. |
XU Mingyan, CHANG Liping. Study on the conversion of nitrogen in the coal into N2 during pyrolysis[J]. Coal Chemical Industry, 2005(6): 40-44. | |
21 | CHENG X, WANG L Y, WANG Z Q, et al. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(50): 12710-12722. |
22 | MURAKAMI K J, ARAI M, SHIRAI M. Pyrolysis behavior of nickel loaded Loy Yang brown coals: influence of calcium additive[J]. Energy & Fuels, 2002, 16(3): 752-755. |
23 | ZHANG W, LI W, LI Y, et al. One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution[J]. Catalysis Today, 2019, 335: 326-332. |
24 | BRANNAN C J, CURTIS C W, CRONAUER D C. Interactions of swelling solvents and catalyst precursors in coal liquefaction systems[J]. Fuel Processing Technology, 1997, 51(1): 63-81. |
25 | 刘源, 贺新福, 杨伏生, 等. 热解温度及气氛变化对神府煤热解产物分布的影响[J]. 煤炭学报, 2015, 40(S2): 497-504. |
LIU Yuan, HE Xinfu, YANG Fusheng, et al. Impacts of pyrolysis temperature and atmosphere on product distribution of Shenfu coal pyrolysis[J]. Journal of China Coal Society, 2015, 40(S2): 497-504. | |
26 | LI Q, WANG Z H, HE Y, et al. Pyrolysis characteristics and evolution of char structure during pulverized coal pyrolysis in drop tube furnace: influence of temperature[J]. Energy & Fuels, 2017, 31(5): 4799-4807. |
27 | 闫晓, 车得福, 徐通模. 煤热解过程中焦炭氮变化规律的试验研究[J]. 西安交通大学学报, 2004(9): 980-984. |
YAN Xiao, CHEN Defu, XU Tongmo. Experimental investigation on char nitrogen conversion during coal pyrolysis[J]. Journal of Xi’an Jiaotong University, 2004(9): 980-984. | |
28 | ZAMBRANO N P, DUARTE L J, et al. Delayed coker coke characterization: correlation between process conditions, coke composition, and morphology[J]. Energy & Fuels, 2018, 32(3): 2722-2732. |
29 | LIN S Y, HIRATO M, HORIO M. The characteristics of coal char gasification at around ash melting temperature[J]. Energy & Fuels, 1994, 8(3): 598-606. |
30 | SHIM H S, HURT R H. Thermal annealing of chars from diverse organic precursors under combustion-like conditions[J]. Energy & Fuels, 2000, 14(2): 340-348. |
31 | ASHOK J, KAWL S. Nickel iron alloy supported over iron alumina catalysts for steam reforming of biomass tar model compound[J]. ACS Catalysis, 2014, 4(1): 289-301. |
32 | CAO J P, SHI P, ZHAO X Y, et al. Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst[J]. Fuel Processing Technology, 2014, 123: 34-40. |
33 | DONALD J, XU C, HASHIMOTO H, et al. Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere[J]. Applied Catalysis A: General, 2010, 375(1): 124-133. |
34 | XU C, DONALD J, BYAMBAJAV E, et al. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification[J]. Fuel, 2010, 89(8): 1784-1795. |
35 | TIAN F J, LI B Q, CHEN Y, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge[J]. Fuel, 2002, 81(17): 2203-2208. |
36 | LIU H F, LIU Y H, LIU Y H, et al. Experimental investigation on the conversion of nitrogenous gas products during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2008, 36(2): 134-138. |
37 | 孙林兵, 倪中海, 张丽芳, 等. 煤热解过程中氮、硫析出形态的研究进展[J]. 洁净煤技术, 2002(3): 47-50. |
SUN Linbing, NI Zhonghai, ZHANG Lifang, et al. Research advancement of nitrogen and sulfur separate out form in coal pyrolysis process[J]. Clean Coal Technology, 2002(3): 47-50. | |
38 | GONG B, BUCKLEY A N, LAMB R N, et al. XPS determination of the forms of nitrogen in coal pyrolysis chars[J]. Surface and Interface Analysis, 1999, 28(1): 126-130. |
39 | ZHAN H, ZHUANG X Z, SONG Y P, et al. Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass[J]. Applied Energy, 2018, 219: 20-33. |
40 | DENG L, JIN X, ZHANG Y, et al. Release of nitrogen species during rapid pyrolysis of model coals[J]. Energy & Fuels, 2013, 27(1): 430-439. |
41 | WU Z H, SUGINMOTO Y, KAWASHIMA H. Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen[J]. Fuel, 2001, 80(2): 251-254. |
[1] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[2] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[3] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[4] | YANG Xigang, CHEN Guoqing, HUANG Linbin, GU Shijun, LI Changsong, ZHANG Yong, JIN Baosheng. Industrial experiment on the effect of SNCR using urea as the reducing agent on the operation of large capacity power station pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3573-3581. |
[5] | HAN Delin, LI Dan, WANG Tiantian, ZHANG Hai, ZHANG Yang, WANG Suilin. Emission characteristics of swirl premixed combustion stabilized using a displacing bluff body [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2915-2923. |
[6] | WANG Xinyu, HUANG Yaji, XU Ligang, LI Zhiyuan, LI Si, LIU Xiaodong. Numerical simulation on regulating secondary air in same layer to alleviate high temperature corrosion of dual tangential boiler [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2292-2300. |
[7] | TAN Xiao, QI Suitao, ZHOU Yiming, SHI Libin, CHENG Guangxu, YI Chunhai, YANG Bolun. Direct catalytic reduction of NO by bimetallic ferromanganese catalyst under non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5850-5857. |
[8] | YANG Jingrui, WANG Ying, CHEN Hu, LYU Yongkang. Effects of O2 concentration on adjusting NO x oxidation ratio cooperated with CABR system denitration performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6139-6148. |
[9] | YIN Zijun, SU Sheng, WANG Zhonghui, WANG Lele, AN Xiaoxue, ZHAO Zhigang, CHEN Yifeng, LIU Tao, WANG Yi, HU Song, XIANG Jun. Research progress on the characteristics and control methods of SO3 and NH4HSO4 formation in coal-fired flue gas [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2328-2337. |
[10] | Jing GUAN, Xilong LAN, Hong SUN, Zhigang LIU, Tong QIAO. Influence of different doped metal cations on the activity and SO2 resistance of Mn based catalysts for NH3-SCR reaction [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2440-2446. |
[11] | Jiancheng YANG,Qin ZHANG,Boxiong SHEN,Shilei YUAN,Shining WANG. Review on denitrification mechanism of modified pillared clays [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1493-1499. |
[12] | Dong WANG,Shiwei MA,Wenguo XIANG,Shiyi CHEN. Pyrolysis characteristics of ash-free Xuzhou bituminous coal withFe/CaO catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 561-566. |
[13] | Sai CHEN, Mingsheng JIA, Minggao GUO, Gaozhen LIU. Application of SNCR to reduction of NOx in an industrial scale slag-tap pulverized coal boiler [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4290-4296. |
[14] | Chunlin ZHAO, Ziran MA, Baodong WANG, Ge LI, Hongyan WANG, Jiali ZHOU, Guangjie LU, Yuting XIAO, Jianhui YANG, Jinfeng LU. Research progress of catalyst coating process for exhaust gas treatment from fixed source [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4015-4023. |
[15] | WU Jie, DI Zuoxing, LUO Mingsheng, WANG Yatao, DING Xiaoxiao, LI Hongjuan. Study of the effects of temperature and pressure on the coal pyrolysis in the atmosphere of N2 [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 116-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |