Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 151-163.DOI: 10.16085/j.issn.1000-6613.2020-0564
• Energy processes and technology • Previous Articles Next Articles
Zhibin WANG1(), Laizhi SUN1,2(), Lei CHEN1,2, Shuangxia YANG1,2, Xinping XIE1,2, Baofeng ZHAO1,2, Hongyu SI1,2, Dongliang HUA1,2()
Received:
2020-04-09
Online:
2021-01-12
Published:
2021-01-05
Contact:
Laizhi SUN,Dongliang HUA
王治斌1(), 孙来芝1,2(), 陈雷1,2, 杨双霞1,2, 谢新苹1,2, 赵保峰1,2, 司洪宇1,2, 华栋梁1,2()
通讯作者:
孙来芝,华栋梁
作者简介:
王治斌(1997—),男,硕士研究生,研究方向为生物油水蒸气催化重整制氢。E-mail:基金资助:
CLC Number:
Zhibin WANG, Laizhi SUN, Lei CHEN, Shuangxia YANG, Xinping XIE, Baofeng ZHAO, Hongyu SI, Dongliang HUA. Progress in hydrogen production by steam catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 151-163.
王治斌, 孙来芝, 陈雷, 杨双霞, 谢新苹, 赵保峰, 司洪宇, 华栋梁. 生物油水蒸气催化重整制氢研究进展[J]. 化工进展, 2021, 40(1): 151-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0564
1 | 蓝平, 许庆利, 吴层, 等.生物质快速裂解油水蒸气催化重整制氢研究进展[J]. 化工进展, 2009, 28(10): 1719-1727,1737. |
LAN P, XU Q L, WU C, et al. Research progress of hydrogen production by steam reforming of biomass pyrolysis oil[J]. Chemical Industry and Engineering Progress, 2009, 28(10): 1719-1727, 1737. | |
2 | SCHULLER G, VÁZQUEZ F V, WAIBLINGER W, et al. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer[J]. J. Power Sources, 2017, 347: 47-56. |
3 | BIČÁKOVÁ O, STRAKA P. Production of hydrogen from renewable resources and its effectiveness[J]. Int. J. Hydrogen Energy, 2012, 37(16): 11563-11578. |
4 | PARTHASARATHY P, NARAYANAN K S. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield: a review[J]. Renewable Energy, 2014, 66: 570-579. |
5 | 罗俊,邵敬爱,杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5): 1555-1564. |
LUO J, SHAO J A, YANG H P, et al. Advances in the preparation of low carbon olefin by catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1555-1564. | |
6 | LI S, ZHENG H S, ZHENG Y J, et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass[J]. Int. J. Hydrogen Energy, 2019, 44(28): 14266-14278. |
7 | NABGAN W, TUAN ABDULLAH T A, MAT R, et al. Renewable hydrogen production from bio-oil derivative via catalytic steam reforming: an overview[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 347-357. |
8 | SETIABUDI H D, AZIZ M A A, ABDULLAH S, et al. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: a review[J]. Int. J. Hydrogen Energy, 2020, 45(36): 18376-18397. |
9 | 谢建军, 阴秀丽, 黄艳琴, 等. 生物油水溶性组分重整制氢研究进展及关键问题分析[J]. 石油学报(石油加工), 2011, 27(5): 829-838. |
XIE J J, YIN X L, HUANG Y Q, et al. Overview on hydrogen production by upgrading of water soluble fractions in bio-oil[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(5): 829-838. | |
10 | CHEN T J, WU C, LIU R H. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production[J]. Bioresour. Technol., 2011, 102(19): 9236-9240. |
11 | XIE H Q, YU Q B, ZUO Z L, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int. J. Hydrogen Energy, 2016, 41(4): 2345-2353. |
12 | FU P, YI W M, LI Z H, et al. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int. J. Hydrogen Energy, 2014, 39(26): 13962-13971. |
13 | GAO N B, HAN Y, QUAN C, et al. Promoting hydrogen-rich syngas production from catalytic reforming of biomass pyrolysis oil on nanosized nickel-ceramic catalysts[J]. Appl. Therm. Eng., 2017, 125: 297-305. |
14 | SORIA M A, BARROS D, MADEIRA L M. Hydrogen production through steam reforming of bio-oils derived from biomass pyrolysis: thermodynamic analysis including in situ CO2 and/or H2 separation[J]. Fuel, 2019, 244: 184-195. |
15 | ÖZKAN G, ŞAHBUDAK B, ÖZKAN G. Effect of molar ratio of water/ ethanol on hydrogen selectivity in catalytic production of hydrogen using steam reforming of ethanol[J]. Int. J. Hydrogen Energy, 2019, 44(20): 9823-9829. |
16 | WANG Y S, WANG C S, CHEN M Q, et al. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part Ⅰ: Effect of nickel content[J]. Fuel Process Technol., 2019, 192: 227-238. |
17 | WANG S R, CAI Q J, ZHANG F, et al. Hydrogen production via catalytic reforming of the bio-oil model compounds: acetic acid, phenol and hydroxyacetone[J]. Int. J. Hydrogen Energy, 2014, 39(32): 18675-18687. |
18 | ESTEBAN-DÍEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Applied Energy, 2016, 177: 579-590. |
19 | CHEN M Q, WANG C S, WANG Y S, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. |
20 | CHEN G Y, TAO J Y, LIU C X, et al. Hydrogen production via acetic acid steam reforming: a critical review on catalysts[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1091-1098. |
21 | 张方柏. 生物质油催化重整制氢用镍基催化剂研究[D]. 成都: 成都理工大学, 2014. |
ZHANG F B. Catalytic reforming of bio-oil for hydrogen production over Ni-based catalysts[D]. Chengdu: Chengdu University of Technology, 2014. | |
22 | ZHANG L J, HU X, HU K, et al. Progress in the reforming of bio-oil derived carboxylic acids for hydrogen generation[J]. J. Power Sources, 2018, 403: 137-156. |
23 | HOU T F, ZHANG S Y, CHEN Y D, et al. Hydrogen production from ethanol reforming: catalysts and reaction mechanism[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 132-148. |
24 | XING R, DAGLE V L, FLAKE M, et al. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4[J]. Catal. Today, 2016, 269: 166-174. |
25 | GIL M V, FERMOSO J, PEVIDA C, et al. Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil[J]. Applied Catalysis B: Environmental, 2016, 184: 64-76. |
26 | TIWARI R, SARKAR B, TIWARI R, et al. Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water-gas-shift (WGS) reaction[J]. J. Mol. Catal A: Chem., 2014, 395: 117-123. |
27 | TAKANABE K, K-I AIKA, SESHAN K, et al. Sustainable hydrogen from bio-oil: steam reforming of acetic acid as a model oxygenate[J]. J. Catal., 2004, 227(1): 101-108. |
28 | RUOCCO C, PALMA V, RICCA A. Hydrogen production by oxidative reforming of ethanol in a fluidized bed reactor using a PtNi/CeO2SiO2 catalyst[J]. Int. J. Hydrogen Energy, 2019, 44(25): 12661-12670. |
29 | PASTOR-PEREZ L, RAMIREZ REINA T, IVANOVA S, et al. Ni-CeO2/C catalysts with enhanced OSC for the WGS reaction[J]. Catalysts, 2015, 5(1): 298-309. |
30 | HU X, LU G X. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid[J]. Applied Catalysis B: Environmental, 2010, 99(1): 289-297. |
31 | MEI Y F, WU C, LIU R. Hydrogen production from steam reforming of bio-oil model compound and byproducts elimination[J]. Int. J. Hydrogen Energy, 2016, 41(21): 9145-9152. |
32 | XIE H Q, YU Q B, YAO X, et al. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts[J]. J. Energy Chem., 2015, 24(3): 299-308. |
33 | 刘启聪, 何立模, 邓增通, 等. Fe/生物质焦预重整在Ni基催化重整生物油中的作用[J]. 化工进展, 2018, 37(11): 4273-4279. |
LIU Q C, HE L M, DENG Z T, et al. Effect of Fe/bio-char pre-reforming on Ni-based catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4273-4279. | |
34 | 杨泽, 李挺, 王美君, 等. Ni基生物质焦油重整催化剂的研究进展[J].化工进展, 2016, 35(10): 3155-3163. |
YANG Z, LI T, WANG M J, et al. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3155-3163. | |
35 | LIU C L, LI S, CHEN D, et al. Hydrogen-rich syngas production by chemical looping steam reforming of acetic acid as bio-oil model compound over Fe-doped LaNiO3 oxygen carriers[J]. Int. J. Hydrogen Energy, 2019, 44(33): 17732-17741. |
36 | WANG S R, ZHANG F, CAI Q J, et al. Steam reforming of acetic acid over coal ash supported Fe and Ni catalysts[J]. Int. J. Hydrogen Energy, 2015, 40(35): 11406-11413. |
37 | ZHANG C T, HU X, ZHANG Z M, et al. Steam reforming of acetic acid over Ni/Al2O3 catalyst: correlation of calcination temperature with the interaction of nickel and alumina[J]. Fuel, 2018, 227: 307-324. |
38 | ITALIANO C, BIZKARRA K, BARRIO V L, et al. Renewable hydrogen production via steam reforming of simulated bio-oil over Ni-based catalysts[J]. Int. J. Hydrogen Energy, 2019, 44(29): 14671-14682. |
39 | ZHANG F B, WANG N, YANG L, et al. Ni-Co bimetallic MgO-based catalysts for hydrogen production via steam reforming of acetic acid from bio-oil[J]. Int. J. Hydrogen Energy, 2014, 39(32): 18688-18694. |
40 | SEO J G, YOUN M H, SONG I K. Hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalysts: effect of Al2O3-ZrO2 supports prepared by a grafting method[J]. J. Mol. Catal. A: Chem., 2007, 268(1): 9-14. |
41 | SANTAMARIA L, ARREGI A, ALVAREZ J, et al. Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis[J]. J. Anal. Appl. Pyrolysis, 2018, 136: 222-231. |
42 | ZHENG X X, YAN C F, HU R R, et al. Hydrogen from acetic acid as the model compound of biomass fast-pyralysis oil over Ni catalyst supported on ceria-zirconia[J]. Int. J. Hydrogen Energy, 2012, 37(17): 12987-12993. |
43 | LI Z K, HU X, ZHANG L J, et al. Renewable hydrogen production by a mild-temperature steam reforming of the model compound acetic acid derived from bio-oil[J]. J. Mol. Catal. A: Chem., 2012, 355: 123-133. |
44 | NABGAN W, ABDULLAH T A T, MAT R, et al. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst[J]. Int. J. Hydrogen Energy, 2017, 42(14): 8975-8985. |
45 | CHEN M Q, LI X J, WANG Y S, et al. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts[J]. Energy Convers Manage, 2019, 184: 315-326. |
46 | XU T T, XIAO B, GLADSON MOYO G, et al. Syngas production via chemical looping reforming biomass pyrolysis oil using NiO/dolomite as oxygen carrier, catalyst or sorbent[J]. Energy Convers Manage, 2019, 198: 111835. |
47 | CHEN M Q, WANG C S, WANG Y S, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. |
48 | BASU S, PRADHAN N C. Steam reforming of acetone over NiCoMgAl mixed oxide catalysts obtained from hydrotalcite precursors[J]. Int. J. Hydrogen Energy, 2020, 45(36): 18133-18143. |
49 | QUAN C, XU S P, ZHOU C C. Steam reforming of bio-oil from coconut shell pyrolysis over Fe/olivine catalyst[J]. Energy Convers Manage, 2017, 141: 40-47. |
50 | 翁洪康, 闫常峰, 胡蓉蓉, 等. 生物油制氢中CO2吸收剂改性研究[J]. 太阳能学报, 2011, 32(11): 1692-1697. |
WENG H K, YAN C F, HU R R, et al. The modifying of carbon dioxide sorbents in hydrogen production from bio-oil[J]. Acta Energiae Solaris Sinica, 2011, 32(11): 1692-1697. | |
51 | COMAS J, LABORDE M, AMADEO N. Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent[J]. J. Power Sources, 2004, 138(1): 61-67. |
52 | VALLE B, GARCíA-GóMEZ N, REMIRO A, et al. Dual catalyst-sorbent role of dolomite in the steam reforming of raw bio-oil for producing H2-rich syngas[J]. Fuel Process Technol., 2020, 200: 106316. |
53 | NICHELE V, SIGNORETTO M, PINNA F, et al. Ni/ZrO2 catalysts in ethanol steam reforming: inhibition of coke formation by CaO-doping[J]. Applied Catalysis B: Environmental, 2014, 150/151: 12-20. |
54 | XIE H Q, YU Q B, ZUO Z L, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int. J. Hydrogen Energy, 2016, 41(4): 2345-2353. |
55 | ESTEBAN-DÍEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Appl. Energ., 2016, 177: 579-590. |
56 | HARRISON D P. Calcium enhanced hydrogen production with CO2 capture[J]. Energy Procedia, 2009, 1(1): 675-681. |
57 | DANG C X, WU S J, YANG G X, et al. Hydrogen production from sorption-enhanced steam reforming of phenol over a Ni-Ca-Al-O bifunctional catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7111-7120. |
58 | ZHAO X Y, XUE Y P, YAN C F, et al. Sorbent assisted catalyst of Ni-CaO-La2O3 for sorption enhanced steam reforming of bio-oil with acetic acid as the model compound[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 106-112. |
59 | VAZQUEZ THYSSEN V, MOREIRA ASSAF E. Ni/CaO-SiO2 catalysts for assessment in steam reforming reaction of acetol[J]. Fuel, 2019, 254: 115592. |
60 | HU R R, LI D P, XUE H Y, et al. Hydrogen production by sorption-enhanced steam reforming of acetic acid over Ni/CexZr1-xO2-CaO catalysts[J]. Int. J. Hydrogen Energy, 2017, 42(12): 7786-7797. |
61 | VALLE B, ARAMBURU B, OLAZAR M, et al. Steam reforming of raw bio-oil over Ni/La2O3-αAl2O3: influence of temperature on product yields and catalyst deactivation[J]. Fuel, 2018, 216: 463-474. |
62 | QUAN C, GAO N B, WANG H H, et al. Ethanol steam reforming on Ni/CaO catalysts for coproduction of hydrogen and carbon nanotubes[J]. Int. J. Energy Res., 2019, 43(3): 1255-1271. |
63 | IWASA N, YAMANE T, TAKEI M, et al. Hydrogen production by steam reforming of acetic acid: comparison of conventional supported metal catalysts and metal-incorporated mesoporous smectite-like catalysts[J]. Int. J. Hydrogen Energy, 2010, 35(1): 110-117. |
64 | AN L, DONG C Q, YANG Y P, et al. The influence of Ni loading on coke formation in steam reforming of acetic acid[J]. Renewable Energy, 2011, 36(3): 930-935. |
65 | SEHESTED J, LARSEN N W, FALSIG H, et al. Sintering of nickel steam reforming catalysts: effective mass diffusion constant for Ni-OH at nickel surfaces[J]. Catal. Today, 2014, 228: 22-31. |
66 | ARGYLE M D, BARTHOLOMEW C H. Heterogeneous catalyst deactivation and regeneration: a review[J]. Catalysts, 2015, 5(1): 145-269. |
67 | SEHESTED J, GELTEN J A P, HELVEG S. Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants[J]. Applied Catalysis A: General, 2006, 309(2): 237-246. |
68 | OCHOA A, ARREGI A, AMUTIO M, et al. Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles[J]. Applied Catalysis B: Environmental, 2018, 233: 289-300. |
69 | ZHANG Z M, WANG Y R, SUN K, et al. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: impacts of barium addition on coking behaviors and formation of reaction intermediates[J]. J. Energy Chem., 2020, 43: 208-219. |
70 | WANG F G, LI Y, CAI W J, et al. Ethanol steam reforming over Ni and Ni-Cu catalysts[J]. Catal. Today, 2009, 146(1): 31-36. |
71 | MORALES-CANO F, LUNDEGAARD L F, TIRUVALAM R R, et al. Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals[J]. Applied Catalysis A: General, 2015, 498: 117-125. |
72 | XIE J X, GALVIS H M T, KOEKEN A C J, et al. Size and promoter effects on stability of carbon-nanofiber-supported iron-based Fischer-Tropsch catalysts[J]. ACS Catalysis, 2016, 6(6): 4017-4024. |
73 | LI X B, XUE L J, ZHU Y Y, et al. Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: acetic acid decomposition[J]. Int. J. Hydrogen Energy, 2018, 43(29): 13212-13224. |
74 | RAN Y X, DU Z Y, GUO Y P, et al. Density functional theory study of acetic acid steam reforming on Ni(111)[J]. Appl. Surf. Sci., 2017, 400: 97-109. |
75 | BOSSOLA F, RECCHIA S, SANTO V D. Catalytic steam reforming of acetic acid: latest advances in catalysts development and mechanism elucidation[J]. Current Catalysis, 2018, 7(2): 89-98. |
76 | WANG S R, GUO W W, GUO L, et al. Experimental and subsequent mechanism research on the steam reforming of ethanol over a Ni/CeO2 catalyst[J]. International Journal of Green Energy, 2015, 12(7): 694-701. |
77 | WANG M J, ZHANG F, WANG S R. Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming[J]. Int. J. Hydrogen Energy, 2017, 42(32): 20540-20548. |
78 | MEDRANO J A, OLIVA M, RUIZ J, et al. Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts[J]. J. Anal. Appl. Pyrolysis., 2009, 85(1): 214-225. |
79 | LATIFI M, BERRUTI F, BRIENS C. Non-catalytic and catalytic steam reforming of a bio-oil model compound in a novel “Jiggle Bed” reactor[J]. Fuel, 2014, 129: 278-291. |
80 | BASILE A, GALLUCCI F, IULIANELLI A, et al. Acetic acid steam reforming in a Pd-Ag membrane reactor: the effect of the catalytic bed pattern[J]. J. Membr. Sci., 2008, 311(1): 46-52. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[9] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[10] | YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |