Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 12-20.DOI: 10.16085/j.issn.1000-6613.2019-2000
• Chemical processes and equipment • Previous Articles Next Articles
Jianmin WU(), Qiwen SUN(), Manxiang DONG, Zongsen ZHANG, Jisen LIU, Yan SUN
Received:
2019-12-30
Online:
2020-06-29
Published:
2020-05-20
Contact:
Qiwen SUN
吴建民(), 孙启文(), 董满祥, 张宗森, 刘继森, 孙燕
通讯作者:
孙启文
作者简介:
吴建民(1981—),男,博士,高级工程师,研究方向为煤间接液化及化学反应工程。E-mail: CLC Number:
Jianmin WU, Qiwen SUN, Manxiang DONG, Zongsen ZHANG, Jisen LIU, Yan SUN. High temperature fixed-fluidized bed Fischer-Tropsch synthesis technology and its products processing route[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 12-20.
吴建民, 孙启文, 董满祥, 张宗森, 刘继森, 孙燕. 高温固定流化床费托合成技术及其产物加工路线[J]. 化工进展, 2020, 39(S1): 12-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-2000
组分 | 典型工况产物选择性(质量分数)/% |
---|---|
CH4 | 8.82 |
C2H4 | 3.37 |
C2H6 | 2.59 |
C3H6 | 8.21 |
C3H8 | 1.16 |
C4H8 | 8.61 |
C4H10 | 1.26 |
C2~C4烯烃 | 20.19 |
总烯烃 | 53.30 |
重质油 | 3.19 |
轻质油 | 50.68 |
总含氧化合物 | 9.21 |
组分 | 典型工况产物选择性(质量分数)/% |
---|---|
CH4 | 8.82 |
C2H4 | 3.37 |
C2H6 | 2.59 |
C3H6 | 8.21 |
C3H8 | 1.16 |
C4H8 | 8.61 |
C4H10 | 1.26 |
C2~C4烯烃 | 20.19 |
总烯烃 | 53.30 |
重质油 | 3.19 |
轻质油 | 50.68 |
总含氧化合物 | 9.21 |
还原气氛 | 还原度/% | 物相组成 |
---|---|---|
100% H2 | 80 | α-Fe、Fe3O4 |
98% H2 + 2% CO | 20 | Fe5C2、Fe3O4 |
100% CO | 4 | Fe5C2、Fe3O4 |
还原气氛 | 还原度/% | 物相组成 |
---|---|---|
100% H2 | 80 | α-Fe、Fe3O4 |
98% H2 + 2% CO | 20 | Fe5C2、Fe3O4 |
100% CO | 4 | Fe5C2、Fe3O4 |
反应性能 | 高温熔铁催化剂 工业化数据 | 高温沉淀铁基 催化剂中试数据 |
---|---|---|
温度/℃ | 330~345 | 330~345 |
压力/MPa | 2.0~2.7 | 2.0~2.3 |
(H2 + CO)转化率/% | 93.79 | 85.59 |
(CO + CO2)转化率/% | 95.69 | 87.51 |
H2转化率/% | 91.02 | 80.58 |
CO转化率/% | 99.63 | 98.72 |
CH4选择性/% | 8.82 | 9.87 |
C2~C4烯烃选择性/% | 20.19 | 25.35 |
C5+选择性/% | 56.77 | 48.86 |
含氧化合物选择性/% | 9.21 | 12.06 |
C4+产率/g· | 130 | 119 |
反应性能 | 高温熔铁催化剂 工业化数据 | 高温沉淀铁基 催化剂中试数据 |
---|---|---|
温度/℃ | 330~345 | 330~345 |
压力/MPa | 2.0~2.7 | 2.0~2.3 |
(H2 + CO)转化率/% | 93.79 | 85.59 |
(CO + CO2)转化率/% | 95.69 | 87.51 |
H2转化率/% | 91.02 | 80.58 |
CO转化率/% | 99.63 | 98.72 |
CH4选择性/% | 8.82 | 9.87 |
C2~C4烯烃选择性/% | 20.19 | 25.35 |
C5+选择性/% | 56.77 | 48.86 |
含氧化合物选择性/% | 9.21 | 12.06 |
C4+产率/g· | 130 | 119 |
种类 | 质量分数/% |
---|---|
含氧化合物 | 8.4754 |
醛类组分 | 0.8772 |
酯类组分 | 0.0365 |
酮类组分 | 1.7463 |
醇类组分 | 5.1931 |
酸类组分 | 0.6222 |
水 | 91.5246 |
种类 | 质量分数/% |
---|---|
含氧化合物 | 8.4754 |
醛类组分 | 0.8772 |
酯类组分 | 0.0365 |
酮类组分 | 1.7463 |
醇类组分 | 5.1931 |
酸类组分 | 0.6222 |
水 | 91.5246 |
1 | SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 1999, 186: 3-12. |
2 | 孙启文. 煤炭间接液化[M]. 北京: 化学工业出版社, 2012: 6-11. |
SUN Q W. Coal indirect liquefaction[M]. Beijing: Chemical Industry Press, 2012: 6-11. | |
3 | 孙启文. 以油品、烯烃和化学品为目标产品的高温费托合成煤液化技术[C]//2010中国国际煤化工发展论坛, 北京, 2010. |
SUN Q W. High temperature Fischer-Tropsch coal liquefaction technology with oil, olefins and chemicals[C]// The International Coal Industry Forum of China, Beijing, 2010. | |
4 | ESPINOZA R L, STEYNBERG A P, JAGER B. Low temperature Fischer-Tropsch synthesis from a Sasol perspective[J]. Applied Catalysis A: General, 1999, 186: 13-26. |
5 | 孙启文, 吴建民, 张宗森, 等. 煤间接液化技术及其研究进展[J]. 化工进展, 2013, 32(1): 1-11. |
SUN Q W, WU J M, ZHANG Z S, et al. Indirect coal liquefaction technology and its research progress[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 1-11. | |
6 | DUVENHAGE D J, SHINGLES T. Synthol reactor technology development[J]. Catalysis Today, 2002, 71(3/4): 301-305. |
7 | STEYNBERG A P, DRY M E. Fischer-Tropsch technology[M]. Holland: Elsevier Science & Technology Books, 2004:29-45. |
8 | 吴春来. 南非Sasol的煤炭间接液化技术[J]. 煤化工, 2003(2): 3-6. |
WU C L. Sasol synfuels indirect coal liquefaction technology[J]. Coal Chemical Industry, 2003(2): 3-6. | |
9 | 高温费托合成技术两项成果通过鉴定[N]. 能源化工, 2019(2): 74. |
Two achievements of high temperature Fischer-Tropsch synthesis passed indentification[N]. Energy Chemical Industry, 2019(2):74. | |
10 | 我高温费托合成技术国际领先[N]. 中国石油和化工, 2019(5): 65. |
China’s high temperature Fischer-Tropsch synthesis technology leads the world[N]. China Petroleum and Chemical Industry, 2019(5): 65. | |
11 | 孙启文, 朱继承, 田基本, 等. 一种利用流化床反应器进行费托合成的方法: ZL200510026967.8[P]. 2005-06-21. |
SUN Q W, ZHU J C, TIAN J B, et al. A method for Fischer-Tropsch synthesis using fluidized bed reactor: ZL200510026967.8[P]. 2005-06-21. | |
12 | 孙启文,朱继承,庞利峰,等. 用于费托合成的流化床反应器: ZL2006l00236l5.1[P]. 2006-01-25. |
SUN Q W, ZHU J C, PANG L F, et al. Fluidized bed reactor for Fischer-Tropsch synthesis: ZL2006l00236l5.1[P]. 2006-01-25. | |
13 | 公磊, 吴秀章, 卢卫民, 等. 煤基高温费托合成技术进展[J]. 化工进展, 2016, 35(S1): 122-129. |
GONG L, WU X Z, LU W M, et al. Advances in the coal based high-temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 122-129. | |
14 | STEYNBERG A P, ESPINOZA R L, JAGER B, et al. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Applied Catalysis A: General, 1999, 186(1/2): 41-54. |
15 | 刘润雪, 刘任杰, 徐艳, 等. 铁基费托合成催化剂研究进展[J]. 化工进展, 2016, 35(10): 3169-3179. |
LIU R X, LIU R J, XU Y, et al. Recent advances in the development of iron-based catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3169-3179. | |
16 | LIU R J, XU Y, QIAO Y, et a1. Factors influencing the Fischer-Tropsch synthesis performance of iron-based catalyst: iron oxide dispersion, distribution and reducibility[J]. Fuel Processing Technology, 2015, 139: 25-32. |
17 | 李娟, 吴梁鹏, 邱勇, 等. 费托合成催化剂的研究进展[J]. 化工进展, 2013, 32(S1): 100-109. |
LI J, WU L P, QIU Y, et al. Research advances in catalysts for Fischer-Tropsch synthesis[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 100-109. | |
18 | 孙启文, 杨文书, 姜大伟, 等. 一种用于费托合成的熔铁催化剂及其制备方法和应用:ZL200410024742.4 [P]. 2004-05-28. |
SUN Q W, YANG W S, JIANG D W, et al. A fused iron catalyst for Fischer-Tropsch synthesis and its preparation method and application: ZL200410024742.4[P]. 2004-05-28. | |
19 | 孙启文, 蒋凡凯, 陈立才, 等. 一种费托合成熔铁催化剂及其制备方法及应用: ZL200810202454.1[P]. 2008-11-10. |
SUN Q W, JIANG F K, CHEN L C, et al. A fused iron Fischer-Tropsch synthesis catalyst and its preparation method and application: ZL200810202454.1[P]. 2008-11-10. | |
20 | 沈菊李, 刘化章, 李小年, 等. 费-托合成Fe1-xO基熔铁催化剂的研究[J]. 催化学报, 2004, 25(10): 785-788. |
SHEN J L, LIU H Z, LI X N, et al. Study on Fe1-xO fused iron catalyst for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2004, 25(10): 785-788. | |
21 | ANDERSON J R, BOUDART M. Catalysis science and technology[M]. Berlin: Springer-Verlag,1981: 159-255. |
22 | 孙启文, 肖建平, 蒋凡凯, 等. 一种高温费托合成微球型铁基催化剂及其制备方法: ZL200510028995.3[P]. 2005-08-22. |
SUN Q W, XIAO J P, JIANG F K, et al. A microsphere type iron-based catalyst for high temperature Fischer-Tropsch synthesis and its preparation method: ZL200510028995.3[P]. 2005-08-22. | |
23 | 孙启文, 蒋凡凯, 杨文书, 等. 一种用于高温费托合成的微球状铁基催化剂及其制备方法: ZL200510024821.X[P]. 2005-04-01. |
SUN Q W, JIANG F K, YANG W S, et al. A microsphere type iron-based catalyst for high temperature Fischer-Tropsch synthesis and its preparation method: ZL200510024821.X[P]. 2005-04-01. | |
24 | 孙启文, 朱继承, 田基本, 等. 颗粒状铁基费托合成催化剂的工业还原方法: ZL200510026968.2[P]. 2005-06-21. |
SUN Q W, ZHU J C, TIAN J B, et al. The industrial reduction method of granular iron-based Fischer-Tropsch synthesis catalyst: ZL200510026968.2[P]. 2005-06-21. | |
25 | BIAN G, OONUKI A, KOIZUMI N, et al. Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO[J]. Journal of Molecular Catalysis A: Chemical, 2002, 186(1): 203-213. |
26 | 王平. 分子筛负载铁催化剂上的费托合成反应[D]. 厦门: 厦门大学, 2006. |
WANG P. Fischer-Tropsch synthesis reaction over molecular sieve supported iron catalysts[D]. Xiamen: Xiamen University, 2006. | |
27 | SUN J, BAO X. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts[J]. ChemInform, 2008, 14(44): 7478-7488. |
28 | 李剑锋, 陶跃武, 周晓峰, 等. 负载型铁基催化剂上合成气制低碳烯烃[J]. 化学反应工程与工艺, 2010, 26(6): 486-493. |
LI J F, TAO Y W, ZHOU X F, et al. Performance of supported Fe based catalyst for synthesis of light alkenes from syngas[J]. Chemical Reaction Engineering and Technology, 2010, 26(6): 486-493. | |
29 | LOPEZ C, CORMA A. Supported iron nanopartides as catalysts for sustainable production of lower olefins[J]. Chem. Cat. Chem.,2012, 335(6): 835-838. |
30 | ZHANG X J, LIU Y, LIU G, et al. One-step preparation of bimodal Fe-Mn-K/SiO2 catalyst and its catalytic performance of slurry phase Fischer-Tropsch synthesis[J]. Catalysis Letters, 2010, 139(1/2): 7-16. |
31 | DING M Y, LIU J, ZHANG Q, et al. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catalysis Communications, 2012, 28: 138-142. |
32 | YU G B, SUN B, PEI Y, et al. FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2009, 132 (3): 935-937. |
33 | 张敬畅, 卫国宾, 曹维良. 合成气制低碳烯烃用催化剂的制备及性能表征[J]. 催化学报, 2003, 24(4): 259-264. |
ZHANG J C, WEI G B, CAO W L. Preparation and characterization of catalyst of synthesis of light olefins by syngas[J]. Chinese Journal of Catalysis, 2003, 24(4): 259-264. | |
34 | 葛秋伟, 肖竹钱, 张金建, 等. 合成气一步法制汽油馏分烃费托合成催化剂研究进展[J]. 应用化工, 2015, 44(9):1737-1746. |
GE Q W, XIAO Z Q, ZHANG J J, et al. Development of Fischer-Tropsch catalyst for one-step gasoline synthesis from syngas[J]. Applied Chemical Industry, 2015, 44(9): 1737-1746. | |
35 | LI J B, MA H F, ZHANG H T, et al. Sodium promoter on iron-based catalyst for direct catalytic synthesis of light alkenes from syngas[J]. Fuel Processing Technology, 2014, 125: 119-124. |
36 | DI SANZO F P, LANE J L, BERGQUIST P M, et al. Determination of total oxygenates in Fischer-Tropsch liquid products[J]. Journal of Chromatography A, 1983, 281: 101-108. |
37 | 孙启文, 杨正伟, 张宗森. 一种从费托合成油品中分离含氧化合物和1-己烯的方法: ZL201610226865.9[P]. 2016-04-13. |
SUN Q W, YANG Z W, ZHANG Z S. A method for separating oxygen-containing compound and 1-hexene from Fischer-Tropsch synthesis oil: ZL201610226865.9[P]. 2016-04-13. | |
38 | 杨正伟, 孙启文. 萃取精馏脱高温费托合成C6馏分中的含氧化合物[J]. 石油化工, 2016, 45(4): 402-407. |
YANG Z W, SUN Q W. Removing oxygenates from C6 fraction in high-temperature Fisher-Tropsch synthesis products by extractive distillation[J]. Petrochemical Technology, 2016, 45(4): 402-407. | |
39 | 孙启文, 杨正伟, 张宗森. 一种从碳氢(氧)混合物料中分离提纯1-辛烯的方法: ZL201310303047.0[P]. 2013-07-15. |
SUN Q W, YANG Z W, ZHANG Z S. A method for separating and purifying 1-octene from hydrocarbon mixture: ZL201310303047.0[P]. 2013-07-15. | |
40 | 杨正伟, 孙启文. 共沸精馏脱高温费托合成C8馏分中的含氧化合物[J]. 化工进展, 2017, 36(1): 53-58. |
YANG Z W, SUN Q W. A zeotropie distillation to remove the oxygenates from high-temperature Fisher-Tropsch C8-cut[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 53-58. | |
41 | 孙启文, 濮鑫, 孙燕. 一种由高温费托合成α-烯烃制备低黏度润滑油基础油的方法: ZL201610196535.X[P]. 2016-03-31. |
SUN Q W, PU X, SUN Y. A method for preparing low viscosity lubricant base oil from high temperature Fischer-Tropsch α-olefin: ZL201610196535.X[P]. 2016-03-31. | |
42 | 杨正伟, 孙启文, 张宗森. 连续精馏分离高温费托合成反应水中的含氧有机物[J]. 化学工程, 2014, 42(10): 29-33. |
YANG Z W, SUN Q W, ZHANG Z S. Separation of organic compounds from high-temperature Fischer-Tropsch reaction water by continuous distillation[J]. Chemical Engineering, 2014, 42(10): 29-33. | |
43 | 孙启文, 杨正伟, 蒋凡凯, 等. 一种费托合成反应水中非酸性含氧有机物的分离回收方法: 201110315419.2[P]. 2011-10-17. |
SUN Q W, YANG Z W, JAING F K, et al. A method for separating and recovering non-acidic oxygen-containing compounds from Fischer-Tropsch synthesis reaction water: 201110315419.2[P]. 2011-10-17. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |