1 | THARANATHAN R N. Biodegradable films and composite coatings: past, present and future[J]. Trends in Food Science & Technology, 2003, 14(3): 71-78. | 2 | DAVIS G, SONG J H. Biodegradable packaging based on raw materials from crops and their impact on waste management[J]. Industrial Crops and Products, 2006, 23(2): 147-161. | 3 | TEACA C A, BODIRLAU R, SPIRIDON I. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films[J]. Carbohydrate Polymers, 2013, 93(1): 307-315. | 4 | CINELLI P, CHIELLINI E, GORDON S H, et al. Characterization and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics[J]. Macromol. Symp., 2003, 197: 143-155. | 5 | BHAT R, ABDULLAH N, DIN R H, et al. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste[J]. Journal of Food Engineering, 2013, 119(4): 707-713. | 6 | OLEYAEI S A, ALMASI H, GHANBARZADEH B, et al. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: thermal, mechanical and barrier properties[J]. Carbohydrate Polymers, 2016, 152: 253-262. | 7 | 孙鹏, 郑立行, 揣成智. 可降解材料对聚乙烯薄膜性能的影响[J]. 塑料工业, 2009, 37(10): 22-24. | 7 | SUN P, ZHENG L X, CHUAI C R. Effect of degradable material on the property of polyethylene film[J]. China Plastics Industry, 2009, 37(10): 22-24. | 8 | 滕立军, 王高升, 曹敏, 等. 淀粉-聚乙烯生物降解塑料薄膜的性能研究[J]. 包装工程, 2004, 25(6): 63-65. | 8 | TENG L J, WANG G S, CAO M, et al. Research on the properties of starch-polyethylene biodegradable plastics film[J]. Pckaging Engineering, 2004, 25(6): 63-65. | 9 | 赵建青, 黄涛, 王敏, 等. 微生物降解PVC薄膜的研究——Ⅰ. 接枝淀粉的制备和应用[J]. 塑料工业, 1992, 4: 23-25, 33. | 9 | ZHAO J Q, HUANG T, WANG M, et al. Study on biodegradable PVC film—Ⅰ. Synthesis and application of grafted starch[J]. China Plastics Industry, 1992, 4: 23-25, 33. | 10 | SALAZAR-SáNCHEZ M R, CAMPO-ERAZO S D, VILLADA-CASTILLO H S, et al. Structural changes of cassava starch and polylactic acid films submitted to biodegradation process[J]. International Journal of Biological Macromolecules, 2019, 129: 442-447. | 11 | MALHERBI N M, SCHMITZ A C, GRANDO R C, et al. Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging[J]. Food Packaging and Shelf Life, 2019, 19: 140-146. | 12 | TIAN Y, ZHANG K, ZHOU M, et al. High-performance starch films reinforced with microcrystalline cellulose made from eucalyptus pulp via ball milling and mercerization[J]. Starch-St?rke, 2019, 71(3/4): 180-218. | 13 | LUCHESE C L, PAVONI J M F, SANTOS N Z DOS, et al. Effect of chitosan addition on the properties of films prepared with corn and cassava starches[J]. Journal of Food Science and Technology, 2018, 55(8): 2963-2973. | 14 | HERNIOU-JULIEN C, MENDIETA J R, GUTIéRREZ T J. Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions[J]. Food Hydrocolloids, 2019, 89: 67-79. | 15 | MARTINS I M G, MAGINA S P, OLIVEIRA L, et al. New biocomposites based on thermoplastic starch and bacterial cellulose[J]. Composites Science and Technology, 2009, 69(13): 2163-2168. | 16 | MOGHADDAS E, GHASEMPOUR Z, ALIZADEH M. Fabrication of an eco-friendly antioxidant biocomposite: Zedo gum/sodium caseinate film by incorporating microalgae (Spirulina platensis)[J]. Journal of Applied Polymer Science, 2018, 135(13): 46024(1-9. | 17 | AYDIN A A, ILBERG V. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends[J]. Carbohydrate Polymers, 2016, 136: 441-448. | 18 | BULE′ON A, COLONNA P, PLANCHOT V, et al. Starch granules structure and biosynthesis[J]. International Journal of Biological Macromolecules, 1998, 23: 85-122. | 19 | SOEST J J G V, VLIEGENTHART J F G. Crystallinity in starch plastics consequences for material properties[J]. Focus, 1997, 15: 208-213. | 20 | TESTER R F, KARKALAS J, QI X. Starch—composition, fine structure and architecture[J]. Journal of Cereal Science, 2004, 39(2): 151-165. | 21 | 郑譞, 侯袁婧, 龚春丽, 等. 耐水型热塑性淀粉基生物降解复合材料的研究进展[J]. 材料导报, 2016, 30(28): 389-395. | 21 | ZHENG X, HOU Y J, GONG C L, et al. Research progress in water proof thermoplastic srarch-based biodegradable composites[J]. Materials Reports, 2016, 30(28): 389-395. | 22 | ZHANG Z J, LI N, LI H Z, et al. Preparation and characterization of biocomposite chitosan film containing Perilla frutescens (L.) Britt. essential oil[J]. Industrial Crops and Products, 2018, 112: 660-667. | 23 | LIU Z, DONG Y, MEN H, et al. Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate[J]. Carbohydrate Polymers, 2012, 89(2): 473-477. | 24 | ANGELLIER H, MOLINA-BOISSEAU S, DOLE P, et al. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites[J]. Biomacromolecules, 2006, 7(2): 531-539. | 25 | MONTERO B, RICO M, RODRIGUEZ-LLAMAZARES S, et al. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume[J]. Carbohydrate Polymers, 2017, 157: 1094-1104. | 26 | GONZáLEZ K, RETEGI A, GONZALEZ A, et al. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites[J]. Carbohydrate Polymers, 2015, 117: 83-90. | 27 | KAUSHIK A, SINGH M, VERMA G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw[J]. Carbohydrate Polymers, 2010, 82(2): 337-345. | 28 | GIRONèS J, LóPEZ J P, MUTJéP, et al. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing[J]. Composites Science and Technology, 2012, 72(7): 858-863. | 29 | HIETALA M, MATHEW A P, OKSMAN K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion[J]. European Polymer Journal, 2013, 49(4): 950-956. | 30 | SILVA J B A DA, SANTANA J S, LUCAS A D, et al. PBAT/TPS-nanowhiskers blends preparation and application as food packaging[J]. Journal of Applied Polymer Science, 2019, 136(26): 47699(1-10. | 31 | SUKHIJA S, SINGH S, RIAR C S. Physical, mechanical, morphological, and barrier properties of elephant foot yam starch, whey protein concentrate and psyllium husk based composite biodegradable films[J]. Polymer Composites, 2018, 39: E407-E415. | 32 | JUNG B N, KANG D H, SHIM J K, et al. Physical and mechanical properties of plasticized butenediol vinyl alcohol copolymer/thermoplastic starch blend[J]. Journal of Vinyl and Additive Technology, 2018, 25(2): 109-116. | 33 | ESMAEILI M, PIRCHERAGHI G, BAGHERI R, et al. Poly(lactic acid)/coplasticized thermoplastic starch blend: effect of plasticizer migration on rheological and mechanical properties[J]. Polymers for Advanced Technologies, 2019, 30(4): 839-851. | 34 | ZHANG S, LIN Z, LI J, et al. Elevated ductility, optical, and air barrier properties of poly (butyleneadipate-co-terephthalate) bio-based films via novel thermoplastic starch feature[J]. Polymers for Advanced Technologies, 2019, 30(4): 852-862. | 35 | GUTIéRREZ T J, TORO-MáRQUEZ L A, MERINO D, et al. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract[J]. Food Hydrocolloids, 2019, 89: 283-293. | 36 | FLOREZ J P, FAZELI M, SIMAO R A. Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB[J]. International Journal of Biological Macromolecules, 2019, 123: 609-621. | 37 | SUN T, LI G, NING T Y, et al. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut[J]. Agricultural Water Management, 2018, 208: 214-223. | 38 | ZHOU J, MA Y, REN L, et al. Preparation and characterization of surface crosslinked TPS/PVA blend films[J]. Carbohydrate Polymers, 2009, 76(4): 632-638. | 39 | MAJDZADEH-ARDAKANI K, NAZARI B. Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites[J]. Composites Science and Technology, 2010, 70(10): 1557-1563. | 40 | NOSHIRVANI N, GHANBARZADEH B, GARDRAT C, et al. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films[J]. Food Hydrocolloids, 2017, 70: 36-45. | 41 | WANG W, ZHANG H, JIA R, et al. High performance extrusion blown starch/polyvinyl alcohol/clay nanocomposite films[J]. Food Hydrocolloids, 2018, 79: 534-543. | 42 | GUIMAR?ES M, BOTARO V R, NOVACK K M, et al. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils[J]. Industrial Crops and Products, 2015, 70: 72-83. | 43 | PRIYA B, GUPTA V K, PATHANIA D, et al. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre[J]. Carbohydrate Polymers, 2014, 109: 171-179. | 44 | ABBASI Z. Water resistance, weight loss and enzymatic degradation of blends starch/polyvinyl alcohol containing SiO2 nanoparticle[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2): 264-268. | 45 | NOSHIRVANI N, HONG W, GHANBARZADEH B, et al. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films[J]. International Journal of Biological Macromolecules, 2018, 107: 2065-2074. | 46 | MENG Q K, HEUZEY M C, CARREAU P J. Effects of a multifunctional polymeric chain extender on the properties of polylactide and polylactide/clay nanocomposites[J]. International Polymer Processing, 2012, 27(5): 505-516. | 47 | KE T, SUN X S. Starch, poly(lactic acid), and poly(vinyl alcohol) blends[J]. Journal of Polymers and the Environment, 2003, 11: 7-14. | 48 | NUONA A, LI X Y, ZHU X S, et al. Starch/polylactide sustainable composites: interface tailoring with graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 247-254. | 49 | SELIGRA P G, JARAMILLO C M, FAMá L, et al. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent[J]. Carbohydrate Polymers, 2016, 138: 66-74. | 50 | MULLER J, GONZáLEZ-MARTíNEZ C, CHIRALT A. Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding[J]. European Polymer Journal, 2017, 95: 56-70. | 51 | DAS K, RAY D, BANDYOPADHYAY N R, et al. Physico-mechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films[J]. Composites Part B: Engineering, 2011, 42(3): 376-381. | 52 | MIRANDA C S, FERREIRA M S, MAGALH?ES M T, et al. Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals[J]. Materials Today: Proceedings, 2015, 2(1): 63-69. | 53 | ASHORI A. Effects of graphene on the behavior of chitosan and starch nanocomposite films[J]. Polymer Engineering & Science, 2014, 54(10): 2258-2263. | 54 | BODIRLAU R, TEACA C A, SPIRIDON I. Influence of natural fillers on the properties of starch-based biocomposite films[J]. Compos. Part B: Eng., 2013, 44(1): 575-583. | 55 | SOYKEABKAEW N, LAOSAT N, NGAOKLA A, et al. Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites[J]. Composites Science and Technology, 2012, 72(7): 845-852. | 56 | 李月明, 张泓, 周三九, 等. 可降解壳聚糖淀粉抗菌复合膜对红提葡萄保鲜效果的研究[J]. 食品安全质量检测学报, 2017, 8 (5): 1579-1584. | 56 | LI Y M, ZHANG H, ZHOU S J, et al. Preservation effect of degradable chitosan starch antibacterial composite membrane on red grape[J]. Journal of Food Safety and Quality, 2017, 8 (5): 1579-1584. | 57 | ABDULLAH Z W, DONG Y. Biodegradable and water resistant poly(vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging[J]. Frontiers in Materials, 2019, 6: 1-17. | 58 | ZENG X Q, ZHONG B C, JIA Z X, et al. Halloysite nanotubes as nanocarriers for plant herbicide and its controlled release in biodegradable polymers composite film[J]. Applied Clay Science, 2019, 171: 20-28. | 59 | WU Z, HUANG Y, XIAO L, et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films[J]. International Journal of Biological Macromolecules, 2019, 123: 569-575. | 60 | ZANELA J, CASAGRANDE M, REIS M O, et al. Biodegradable sheets of starch/polyvinyl alcohol (PVA): effects of PVA molecular weight and hydrolysis degree[J]. Waste and Biomass Valorization, 2017, 10(2): 319-326. | 61 | NADERIZADEH S, SHAKERI A, MAHDAVI H, et al. Hybrid nanocomposite films of starch, poly(vinyl alcohol) (PVA), starch nanocrystals (SNCs), and montmorillonite (Na-MMT): structure-properties relationship[J]. Starch - St?rke, 2019, 71(1/2): 1800027. | 62 | NEZAMZADEH S A, AHMADI Z, TAROMI F A. From microstructure to mechanical properties of compatibilized polylactide thermoplastic starch blends[J]. Journal of Applied Polymer Science, 2017, 134: 44734. | 63 | LYU S S, GU J Y, TAN H Y, et al. The morphology, rheological, and mechanical properties of wood flour starch poly(lactic acid) blends[J]. Journal of Applied Polymer Science, 2017, 134(16): 44743(1-9.) | 64 | MULLER J, CASADO QUESADA A, GONZáLEZ-MARTíNEZ C, et al. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch[J]. European Polymer Journal, 2017, 96: 316-325. | 65 | JEZIORSKA R, SZADKOWSKA A, SPASOWKA E, et al. Characteristics of biodegradable polylactide/thermoplastic starch/nanosilica composites: effects of plasticizer and nanosilica functionality[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-15. | 66 | REIS M O, DE SANTANA H, BILCK A P, et al. Characterization of coated biodegradable trays by spectroscopic techniques[J]. Industrial Crops and Products, 2018, 112: 511-514. | 67 | EDHIREJ A, SAPUAN S M, JAWAID M, et al. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch[J]. Fibers and Polymers, 2017, 18(1): 162-171. | 68 | RAMíREZ-HERNáNDEZ A, APARICIO-SAGUILáN A, REYNOSO-MEZA G, et al. Multi-objective optimization of process conditions in the manufacturing of banana ( Musa paradisiaca L.) starch/natural rubber films[J]. Carbohydrate Polymers, 2017, 157: 1125-1133. | 69 | SANTANA J S, ROSARIO J M D, POLA C C, et al. Cassava starch-based nanocomposites reinforced with cellulose nanofibers extracted from sisal[J]. Journal of Applied Polymer Science, 2016, 134(12): 44637. | 70 | JUMAIDIN R, SAPUAN S M, JAWAID M, et al. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm starch/agar hybrid composites[J]. International Journal of Biological Macromolecules, 2017, 97: 606-615. | 71 | NAWAB A, ALAM F, HAQ M A, et al. Mango kernel starch-gum composite films: physical, mechanical and barrier properties[J]. International Journal of Biological Macromolecules, 2017, 98: 869-876. | 72 | MBEY J A, HOPPE S, THOMAS F. Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties[J]. Carbohydrate Polymers, 2012, 88(1): 213-222. | 73 | CHUNG Y L, ANSARI S, ESTEVEZ L, et al. Preparation and properties of biodegradable starch-clay nanocomposites[J]. Carbohydrate Polymers, 2010, 79(2): 391-396. | 74 | CASTILLO L, LOPEZ O, LOPEZ C, et al. Thermoplastic starch films reinforced with talc nanoparticles[J]. Carbohydrate Polymers, 2013, 95(2): 664-674. | 75 | ANDRETTA R, LUCHESE C L, TESSARO I C, et al. Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression[J]. Food Hydrocolloids, 2019, 93: 317-324. | 76 | FERREIRA A M, MARTINS J, CARVALHO L H, et al. Biosourced disposable trays made of brewer’s spent grain and potato starch[J]. Polymers, 2019, 11(923): 1-14. | 77 | VERSINO F, URRIZA M, GARCIA M A. Eco-compatible cassava starch films for fertilizer controlled-release[J]. International Journal of Biological Macromolecules, 2019, 134: 302-307. | 78 | TAK H Y, YUN Y H, LEE C M, et al. Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch[J]. Carbohydrate Polymers, 2019, 208: 261-268. | 79 | ZOUARI-ELLOUZI S, CHAARI F, BOUAZIZ A, et al. Suitability of starch extracted from fresh pasta by-product in biodegradable film production[J]. Environmental Progress & Sustainable Energy, 2018, 38(2): 527-533. | 80 | AREA M R, RICO M, MONTERO B, et al. Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: processing and characterization[J]. Carbohydrate Polymers, 2019, 206: 726-733. | 81 | ZHAO Y, SALDA?A M D A. Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology[J]. The Journal of Supercritical Fluids, 2019, 143: 97-106. | 82 | GUO A F, LI J F, LI F Y, et al. Compression behavior of biodegradable thermoplastic plasticizer-containing composites[J]. Strength of Materials, 2019, 51(1): 18-25. | 83 | CHANTAWEE K, S-A RIYAJAN. Effect of glycerol on the physical properties of carboxylated styrene-butadiene rubber/cassava starch blend films[J]. Journal of Polymers and the Environment, 2018, 27(1): 50-60. | 84 | KIBAR E A A, US F. Starch-cellulose ether films: microstructure and water resistance[J]. Journal of Food Process Engineering, 2017, 40(2): e12382(1-8). | 85 | 顾海蓉, 沈根祥, 黄丽华, 等. 热塑淀粉MaterBi可生物降解地膜的适用性与降解性能研究[J]. 农业环境科学学报, 2009, 28(3): 539-543. | 85 | GU H R, SHEN G X, HAUNG L H, et al. Biodegradability and applicability of thermoplastic starch biodegradable mulching film[J]. Journal of Agro-Environment Science, 2009, 28(3): 539-543. | 86 | 史静薇. 完全生物降解的特殊聚合物——“NOVON”树脂的应用与发展[J]. 国外塑料, 1994, 2: 37-40. | 86 | SHI J W. Application and development of “NOVON” resin, a completely biodegradable special polymer[J]. World Plastics, 1994, 2: 37-40. | 87 | 郑晓燕. 淀粉基生物降解塑料研究进展[J]. 粮食与油脂, 2008, 12: 5-7. | 87 | ZHENG X Y. Research progress of biodegrable plastics based on starch[J]. Cereals & Oils, 2008, 12: 5-7. | 88 | 徐润华, 刘国海, 戴猷元. 淀粉基生物降解树脂技术进展[J]. 江苏化工, 2002, 30(3): 29-32. | 88 | XU R H, LIU G H, DAI Y Y. The research and development of starch-based biodegradable resin[J]. Jiangsu Chemical Industry, 2002, 30(3): 29-32. | 89 | LI M, LIU P, ZOU W, et al. Extrusion processing and characterization of edible starch films with different amylose contents[J]. Journal of Food Engineering, 2011, 106(1): 95-101. | 90 | ZHANG L, WANG Y, LIU H, et al. Developing hydroxypropyl methylcellulose/hydroxypropyl starch blends for use as capsule materials[J]. Carbohydrate Polymers, 2013, 98(1): 73-79. | 91 | 陆海旭. 生物可降解塑料的发展现状与趋势[J]. 化学工业, 2016, 34(3): 7-14. | 91 | LU H X. Development and trends of biodegradable polymers[J]. Chemical Industry, 2016, 34(3): 7-14. | 92 | DAMMAK M, FOURATI Y, TARRéS Q, et al. Blends of PBAT with plasticized starch for packaging applications: mechanical properties, rheological behaviour and biodegradability[J]. Industrial Crops and Products, 2020, 144:112061. | 93 | XIONG J, SHENG C, WANG Q, et al. Toughened and water-resistant starch/TiO2 bio-nanocomposites as an environment-friendly food packaging material[J]. Materials Research Express, 2019, 6(5): 055045. | 94 | PRABHAKAR M N, SONG J I. Fabrication and characterisation of starch/chitosan/flax fabric green flame-retardant composites[J]. International Journal of Biological Macromolecules, 2018, 119: 1335-1343. | 95 | YUE X, LI J, LIU P, et al. Study on the performance of flame-retardant esterified starch-modified cassava dregs-PBS composites[J]. Journal of Applied Polymer Science, 2018, 135(18): 44849. | 96 | BOCZ K, SZOLNOKI B, MAROSI A, et al. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system[J]. Polymer Degradation and Stability, 2014, 106: 63-73. | 97 | PRABHAKAR M N, SHAH A U R, SONG J I. Improved flame-retardant and tensile properties of thermoplastic starch/flax fabric green composites[J]. Carbohydrate Polymers, 2017, 168: 201-211. | 98 | RABE S, SANCHEZ-OLIVARES G, PEREZ-CHAVEZ R, et al. Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites[J]. Materials, 2019, 12(3): 344. |
|