1 | WATANABE M, THOMAS M L, ZHANG S, et al. Application of ionic liquids to energy storage and conversion materials and devices[J]. Chemical Reviews, 2017, 117(10): 7190-7239. | 2 | HAYES R, WARR G G, ATKIN R. Structure and nanostructure in ionic liquids[J]. Chemical Reviews, 2015, 115(13): 6357-6426. | 3 | SOMERS A, HOWLETT P, MACFARLANE D, et al. A review of ionic liquid lubricants[J]. Lubricants, 2013, 1(1): 3-21. | 4 | HUNT P A, ASHWORTH C R, MATTHEWS R P. Hydrogen bonding in ionic liquids[J]. Chemical Society Reviews, 2015, 44(5): 1257-1288. | 5 | MACFARLANE D R, TACHIKAWA N, FORSYTH M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250. | 6 | LEI Z, DAI C, CHEN B. Gas solubility in ionic liquids[J]. Chemical Reviews, 2013, 114(2): 1289-1326. | 7 | WENDER H, MIGOWSKI P, FEIL A F, et al. Sputtering deposition of nanoparticles onto liquid substrates: recent advances and future trends[J]. Coordination Chemistry Reviews, 2013, 257(17/18): 2468-2483. | 8 | WELTON T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical Reviews, 1999, 99(8): 2071-2084. | 9 | DING K L, LU H, ZHANG Y C, et al. Microwave synthesis of microstructured and nanostructured metal chalcogenides from elemental precursors in phosphonium ionic liquids[J]. Journal of the American Chemical Society, 2014, 136(44): 15465-15468. | 10 | APARICIO S, ATILHAN M, KARADAS F. Thermophysical properties of pure ionic liquids: review of present situation[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 9580-9595. | 11 | KIM T, LIAN J B, MA J M, et al. Morphology controllable synthesis of γ-alumina nanostructures via an ionic liquid-assisted hydrothermal route[J]. Crystal Growth & Design, 2010, 10(7): 2928-2933. | 12 | TARIQ M, FREIRE M G, SARAMAGO B, et al. Surface tension of ionic liquids and ionic liquid solutions[J]. Chemical Society Reviews, 2012, 41(2): 829-868. | 13 | MIGOWSKI P, MACHADO G, TEXEIRA S R, et al. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids[J]. Physical Chemistry Chemical Physics, 2007, 9(34): 4814-4821. | 14 | ZHANG S G, MIRAN M S, IKOMA A, et al. Protic ionic liquids and salts as versatile carbon precursors[J]. J. Am. Chem. Soc., 2014, 136(5): 1690-1693. | 15 | ZHANG S G, DOKKO K, WATANABE M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: structural and physicochemical correlations between precursor and carbon[J]. Chem. Mater., 2014, 26 (9): 2915-2926. | 16 | PENG L, ZHANG J L, LI J S, et al. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids[J]. Chem. Commun., 2012, 48: 8688-8690. | 17 | BLANCHARD L A, BRENNECKE J F. Recovery of organic products from ionic liquids using supercritical carbon dioxide[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 287-292. | 18 | BERNARDI F, SCHOLTEN J D, FECHER G H, et al. Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis[J]. Chem. Phys. Lett., 2009, 479: 113-116. | 19 | MIGOWSKI P, ZANCHET D, MACHADOG, et al. Nanostructures in ionic liquids: correlation of iridium nanoparticles’ size and shape with imidazolium salts’ structural organization and catalytic properties[J]. Phys. Chem. Chem. Phys., 2010, 12: 6826-6833. | 20 | VANECHT E, BINNEMANS K, PATSKOVSKY S, et al. Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids[J]. Phys. Chem. Chem. Phys., 2012, 14: 5662-5671. | 21 | PODGORSEK A, PENSADO A, SANTINI C, et al. Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series[J]. J. Phys. Chem. C, 2013, 117: 3537-3547. | 22 | FROLOV A I, KIRCHNER K, KIRCHNER T, et al. Molecular-scale insights into the mechanisms of ionic liquids interactions with carbon nanotubes[J]. Faraday Discuss, 2012, 154: 235-247. | 23 | CHENG P, LIU C, YANG Y, et al. First-principle investigation of the interactions between PtxRu55-x(x=0, 13, 42, 55) nanoparticles and [BMIM][PF6] ionic liquid[J]. Chem. Phys., 2015, 452: 1-8. | 24 | FONSECA G S, UMPIERRE A P, FICHTNER P F P, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Chem. Eur. J., 2003, 9: 3263-3269. | 25 | Tetsuya YAMADA, Ken-ichi KATSUMATA, Nobuhir MATSUSHITA, et al. Porous ZrO2 sheets synthesized using an ionothermal method and their absorption properties[J]. Dalton Trans., 2015, 44: 8247-8254 | 26 | WANG G M, VALLDOR M, SPIELBERG E T, et al. Ionothermal synthesis, crystal structure, and magnetic study of Co2PO4OH isostructural with caminite[J]. Inorg. Chem., 2014, 53(6): 3072-3077. | 27 | SANG Xinxin, PENG Li, ZHANG Jianling, et al. Template-free synthesis of mesoporous polymer[J]. Chem. Commun., 2014, 50: 8128-8130. | 28 | UMPIERRE A P, MACHADO G, FECHER G H, et al. Selective hydrogenation of 1,3 butadieneto 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids[J]. Adv. Synth. Catal., 2005, 347: 1404-1412. | 29 | BERNARDI F, SCHOLTEN J D, FECHER G H, et al. Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis[J]. Chem. Phys. Lett., 2009, 479: 113-116. | 30 | DUPONT J, SCHOLTEN J D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids[J]. Chem. Soc. Rev., 2010, 39: 1780-1804. | 31 | YUAN X, YAN N, KATSYUBA S A, et al. A remarkable anion effect on palladium nanoparticle formation and stabilization in hydroxyl-functionalized ionic liquids[J]. Phys. Chem. Chem. Phys., 2012, 14: 6026-6033. | 32 | MENDON?A A C F, PáDUA A A H, MALFREYT P. Non-equilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction[J]. J. Chem. Theory. Comput., 2013, 9: 1600-1610. | 33 | ZVEREVA E E, GRIMME S, KATSYUBA S A, et al. Solvation and stabilization of palladium nanoparticles in phosphonium-based ionic liquids: a combined infrared spectroscopic and density functional theory study[J]. Phys. Chem. Chem. Phys., 2014, 16: 20672-20680. | 34 | HAYES R, WARR G G, ATKIN R. At the interface: solvation and designing ionic liquids[J]. Phys. Chem. Chem. Phys., 2010, 12: 1709-1723. | 35 | GAO J, NDONG R S, SHIFLETT M B, et al. Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering[J]. ACS Nano, 2015, 9(3): 3243-3253. | 36 | SUSANN W, CHRISTOPH J. Metal nanoparticles in ionic liquids[J]. Top. Curr. Chem., 2017, 375: 65. | 37 | LIAN J, DUAN X, MA J, et al. Hematite (α-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties[J]. ACS Nano, 2009, 3(11): 3749-3761. | 38 | MAN R W Y, LI C H, MACLEAN M W A, et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands[J]. Journal of the American Chemical Society, 2018, 140(5): 1576-1579. | 39 | SERPELL CJ, COOKSON J, THOMPSON A L, et al. Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles[J]. Dalton Trans., 2013, 42: 1385-1393. | 40 | TEGEDER P, FREITAG M, CHEPIGA K M, et al. N-heterocyclic carbene-modified Au-Pd alloy nanoparticles and their application as biomimetic and heterogeneous catalysts[J]. Chemistry: a European Journal, 2018, 24(70): 18682-18688. | 41 | MARTíNEZ P L M, FERRY A, LARA P, et al. New route to stabilize ruthenium nanoparticles with non-isolable chiral N-heterocyclic carbenes[J]. Chemistry: a European Journal, 2015, 21(48): 17495-17502. | 42 | GARMENDIA S, LAWRENSON S B, ARNO M C, et al. Catalytically active N-heterocyclic carbene release from single-chain nanoparticles following a thermolysis-driven unfolding strategy[J]. Macromolecular Rapid Communications, 2019: 1900071. | 43 | KLAUKE K, GRUBER I, KNEDEL T O, et al. Silver, gold, palladium, and platinum N-heterocyclic carbene complexes containing a selenoether- functionalized imidazol-2-ylidene moiety[J]. Organometallics, 2018, 37(3): 298-308. | 44 | CAMPBELL P S, SANTINI C C, BOUCHU D, al et, et al. A novel stabilisation model for ruthenium nanoparticles in imidazolium ionic liquids: in situ spectroscopic and labelling evidence[J]. Phys. Chem. Chem. Phys., 2010, 12: 4217-4123. | 45 | LéGER B, DENICOURT-NOWICKI A, OLIVIER-BOURBIGOU H, et al. Imidazolium-functionalized bipyridine derivatives: a promising family of ligands for catalytical Rh(0) colloids[J]. Tetrahedron Letters, 2009, 50(47): 6531-6533. | 46 | VANECHT E, BINNEMANS K, PATSKOVSKY S, et al. Stability of sputter-deposited gold nanoparticles inimidazolium ionic liquids[J]. Phys. Chem. Chem. Phys., 2012, 14: 5662-5671. | 47 | UENO K, INABA A, KONDOH M, et al. Colloidal stability of bare and polymer grafted silica nanoparticles in ionic liquids[J]. Langmuir, 2008, 24: 5253-5259. | 48 | VENKATESAN R, PRECHTL M H G, SCHOLTEN J D, et al. Palladium nanoparticle catalysts in ionic liquids: synthesis,characterization and selectivepartial hydrogenation of alkynes to Z-alkenes[J]. J. Mater. Chem., 2011, 21: 3030-3036. | 49 | PRECHTL M H G, SCHOLTEN J D, DUPONT J. Tuning the selectivity of ruthenium nanoscale catalysts with functionalised ionic liquids: hydrogenation of nitriles[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313: 74-78. | 50 | KIM K S, DEMBERELNYAMBA D, LEE H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids[J]. Langmuir, 2003, 20: 556-560 | 51 | LéGER B, DENICOURT-NOWICKI A, OLIVIER-BOURBIGOU H, et al. Imidazolium-functionalized bipyridine derivatives: a promising family of ligands for catalytical Rh(0) colloids[J]. Tetrahedron Letters, 2009, 50(47): 6531-6533. | 52 | KIM K S, DEMBERELNYAMBA D, LEE H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids[J]. Langmuir, 2004, 20(3): 556-560. | 53 | ANOUTI M, JACQUEMIN J. Structuring reductive media containing protic ionic liquids and their application to the formation of metallic nanoparticles[J]. Colloids Surf. A, 2014, 445: 1-11. | 54 | ZHANG Y M, CAO Y H, CHEN D, et al. Ionic liquid assisted synthesis of palladium nanoclusters for highly efficient formaldehyde oxidation[J]. Electrochimica Acta, 2018, 269: 38-44. | 55 | LI X L, GUO W, LIU Y F, et al. Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: ionic liquid assisted synthesis and the effect of CuO coating[J]. Electrochimica Acta, 2014, 116: 278-283. | 56 | LI N, CHAI Y M, LI Y P, et al. Ionic liquid assisted hydrothermal synthesis of hollow vesicle-like MoS2 microspheres[J]. Mater. Lett., 2012, 66: 236-238. | 57 | FIRESTONE M A, RICKERT P G, SEIFERT S, et al. Anion effects on ionogel formation in N, N′-dialkylimidazolium-based ionic liquids[J]. Chim. Acta, 2004, 357: 3991-3998. | 58 | KANG X, ZHANG J, SHANG W, et al. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel[J]. Journal of the American Chemical Society, 2014, 136(10): 3768-3771. | 59 | PRECHTL M H G, CAMPBELL P S, SCHOLTEN J D, et al. Imidazolium ionic liquids as promoters and stabilising agents for the preparation of metal(0) nanoparticles by reduction and decomposition of organometallic complexes[J]. Nanoscale, 2010, 2(12): 2601-2606. | 60 | CHOI S, KIM K S, YEON S H, et al. Fabrication of silver nanoparticles via self-regulated reduction by 1-(2-hydroxyethyl)-3-methylimidazolium tetra?uoroborate[J]. Korean J. Chem. Eng., 2007, 24: 856-859. | 61 | ZHU H, HUANG J F, PAN Z, et al. Ionothermal synthesis of hierarchical ZnO nanostructures from ionic-liquid precursors[J]. Chemistry of Materials, 2006, 18(18): 4473-4477. | 62 | HSU S J, LIN I J B. Synthesis of gold nanosheets through thermolysis of mixtures of long chain 1-alkylimidazole and hydrogen tetrachloroaurate (Ⅲ)[J]. J. Chin. Chem. Soc., 2009, 56: 98-106. | 63 | MALIK M A, WANI M Y, HASHIM M A. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update[J]. Arabian Journal of Chemistry, 2012, 5(4): 397-417. | 64 | LI Z H, ZHANG J L, DU J M, et al. Preparation of silica microrods with nano-sized pores in ionic liquid microemulsions[J]. Colloids Surf. A, 2006, 286: 117-120. | 65 | WU L G, SHEN J N, DU C H, et al. Development of AgCl/poly(MMA-co-AM) hybrid pervaporation membranes containing AgCl nanoparticles through synthesis of ionic liquid microemulsions[J]. Sep. Purif. Technol., 2013, 114: 117-125. | 66 | SERRA A, GOMEZ E, LóPEZ-BARBERA J F, et al. Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6)[J]. ACS Nano, 2014, 8(5): 4630-4639. | 67 | LI Y H, QIANG Q, ZHENG X W, et al. Controllable electrochemical synthesis of Ag nanoparticles in ionic liquid microemulsions[J]. Electrochemistry Communications, 2015, 58: 41-45. | 68 | ZHAN T R, ZHANG Y M, YANG Q, et al. Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems[J]. Chemical Engineering Journal, 2016, 302: 459-465. | 69 | PEI Y C, RU J, YAO K S, et al. Nanoreactors stable up to 200°C: a class of high temperature microemulsions composed solely of ionic liquids[J]. Chem. Commun., 2018, 54: 6260-6263. | 70 | TAUBERT A. Cubes and hollow rods from ionic liquid emulsions[J]. Acta. Chim. Slov., 2005, 52: 168-170. | 71 | ZHAO M, ZHENG L, BAI X, et al. Liquid microemulsion droplets as Fabrication of silica nanoparticles and hollow spheres using ionic templates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346(1/2/3): 229-236. | 72 | HEJAZIFAR M, EARLE M, SEDDON K R, et al. Ionic liquid-based microemulsions in catalysis[J]. The Journal of Organic Chemistry, 2016, 81(24): 12332-12339. |
|