Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 605-615.DOI: 10.16085/j.issn.1000-6613.2019-0866
• Materials science and technology • Previous Articles Next Articles
Yujia LIU(),Changjiu XIA(),Min LIN(),Bin ZHU,Xinxin PENG,Yibin LUO,Xingtian SHU
Received:
2019-05-29
Online:
2020-03-12
Published:
2020-02-05
Contact:
Changjiu XIA,Min LIN
刘聿嘉(),夏长久(),林民(),朱斌,彭欣欣,罗一斌,舒兴田
通讯作者:
夏长久,林民
作者简介:
刘聿嘉(1992—),女,博士研究生,研究方向为杂原子分子筛与Lewis酸催化反应。E-mail:基金资助:
CLC Number:
Yujia LIU,Changjiu XIA,Min LIN,Bin ZHU,Xinxin PENG,Yibin LUO,Xingtian SHU. Stannosilicate molecular sieve: a new star in heteroatom incorporated zeolite family[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 605-615.
刘聿嘉,夏长久,林民,朱斌,彭欣欣,罗一斌,舒兴田. 锡硅分子筛:新型杂原子分子筛催化材料[J]. 化工进展, 2020, 39(2): 605-615.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0866
1 | 鞠雅娜, 沈志虹, 赵佳, 等. 杂原子( B, Ti, Fe)进入 Y 型分子筛骨架的表征[J]. 物理化学学报, 2006, 22(1): 28-32. |
JU Yana, SHEN Zhihong, ZHAO Jia, et al. Characterization of heteroatom (B, Ti, Fe) inserted into framework of zeolites[J]. Acta Physico-Chimica Sinica, 2006, 22(1): 28-32. | |
2 | 刘春英, 柳云骐, 安长华, 等. 杂原子分子筛的水热合成与应用研究进展[J]. 化工进展, 2006, 25(6): 646-650. |
LIU Chunying, LIU Yunqi, AN Changhua, et al. Progress in hydrothermal synthesis and application of heteroatomic molecular sieves[J]. Chemical Industry and Engineering Progress, 2006, 25(6): 646-650. | |
3 | TARAMASSO M, PEREGO G, NOTARI B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
4 | PANOV G I, SHEVELEVA G A, KHARITONOV A S, et al. Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites[J]. Applied Catalysis A: General, 1992, 82(1): 31-36. |
5 | EI-MALKI E M, SANTEN R A VAN, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622. |
6 | LUBANGO L M, SCURRELL M S. Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts: enhancements in BTX selectivity by means of a second transition metal ion[J]. Applied Catalysis A: General, 2002, 235(1/2): 265-272. |
7 | DONGARE M K, SINGH P, MOGHE P P, et al. Synthesis, characterization, and catalytic properties of [Zr]-ZSM-5[J]. Zeolites, 1991, 11(7): 690-693. |
8 | CHIESA M, MEYNEN V, DOORSLAER S VAN, et al. Vanadium silicalite-1 nanoparticles deposition onto the mesoporous walls of SBA-15. Mechanistic insights from a combined EPR and Raman study[J]. Journal of the American Chemical Society, 2006, 128(27): 8955-8963. |
9 | MAL N K, RAMASWAMY A V. Synthesis and catalytic properties of large-pore Sn-β and Al-free Sn-β molecular sieves[J]. Chemical Communications, 1997 (5): 425-426. |
10 | MOLINER M, ROMÁN-LESHKOV Y, DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010, 107(14): 6164-6168. |
11 | MAL N K, BHAUMIK A, RAMASWAMY V, et al. Synthesis of Al-free Sn-containing molecular sieves of MFI, MEL and MTW types and their catalytic activity in oxidation reactions[J]. Studies in Surface Science & Catalysis, 1995, 94: 317-324. |
12 | RENZ M, BLASCO T, CORMA A, et al. Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H2O2[J]. Chemistry-A European Journal, 2002, 8(20): 4708-4717. |
13 | CHANG C C, CHO H J, WANG Z, et al. Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion[J]. Green Chemistry, 2015, 17(5): 2943-2951. |
14 | OSMUNDSEN C M, HOLM M S, DAHL S, et al. Tin-containing silicates: structure-activity relations[J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2012, 468(2143): 2000-2016. |
15 | CORMA A, NEMETH L T, RENZ M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature, 2001, 412(6845): 423-425. |
16 | HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328(5978): 602-605. |
17 | PARULKAR A, JOSHI R, DESHPANDE N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol[J]. Applied Catalysis A: General, 2018, 566: 25-32. |
18 | CORMA A, DOMINE M E, NEMETH L, et al. Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction)[J]. Journal of the American Chemical Society, 2002, 124(13): 3194-3195. |
19 | MAL N K, BHAUMIK A, KUMAR R, et al. Sn-ZSM-12, a new, large pore MTW type tin-silicate molecular sieve: synthesis, characterization and catalytic properties in oxidation reactions[J]. Catalysis letters, 1995, 33(3/4): 387-394. |
20 | LÁZÁR K, SZELECZKY A M, MAL N K, et al. In situ119Sn-Mössbauer spectroscopic study on MR, MEL, and MTW tin silicalites[J]. Zeolites, 1997, 19(2/3): 123-127. |
21 | SHAH P, RAMASWAMYA V, LAZAR K, et al. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions[J]. Microporous & Mesoporous Materials, 2007, 100(1): 210-226. |
22 | KOWALAK S, PAWL OWSKA M, KUSTOV L M. Properties of SnAlPO-5[M]. Studies in Surface Science and Catalysis, 1995, 94: 203-210. |
23 | MAL N K, RAMASWAMY V, GANAPATHY S, et al. Synthesis and characterization of crystalline, tin-silicate molecular sieves with MFI structure[J]. Journal of the Chemical Society, Chemical Communications, 1994, (17): 1933-1934. |
24 | NIPHADKAR P S, KOTWAL M S, DESHPANDE S S, et al. Tin-silicalite-1: synthesis by dry gel conversion, characterization and catalytic performance in phenol hydroxylation reaction[J]. Materials Chemistry & Physics, 2009, 114(1): 344-349. |
25 | HARRIS J W, CORDON M J, DI IORIO J R, et al. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization[J]. Journal of Catalysis, 2016, 335: 141-154. |
26 | LI P, LIU G, WU H, et al. Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite[J]. The Journal of Physical Chemistry C, 2011, 115(9): 3663-3670. |
27 | KANG Z, ZHANG X, LIU H, et al. A rapid synthesis route for Sn-beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer-Villiger oxidation[J]. Chemical Engineering Journal, 2013, 218(3): 425-432. |
28 | HARRIS J W, LIAO W C, DI IORIO J R, et al. Molecular structure and confining environment of Sn sites in single-site chabazite zeolites[J]. Chemistry of Materials, 2017, 29(20): 8824-8837. |
29 | DAI W, WANG C, TANG B, et al. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides[J]. ACS Catalysis, 2016, 6(5): 2955-2964. |
30 | LIU G, JIANG J G, YANG B, et al. Hydrothermal synthesis of MWW-type stannosilicate and its post-structural transformation to MCM-56 analogue[J]. Microporous and Mesoporous Materials, 2013, 165: 210-218. |
31 | GUO Q, FAN F, PIDKO E A, et al. Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid[J]. ChemSusChem, 2013, 6(8): 1352-1356. |
32 | GRAFF W N P VAN DER, TEMPELMAN C H L, PIDKO E A, et al. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions[J]. Catalysis Science & Technology, 2017, 7(14): 3151-3162. |
33 | YANG X, WU L, WANG Z, et al. Conversion of dihydroxyacetone to methyl lactate catalyzed by highly active hierarchical Sn-USY at room temperature[J]. Catalysis Science & Technology, 2016, 6(6): 1757-1763. |
34 | LUO H Y, BUI L, GUNTHER W R, et al. Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones[J]. ACS Catalysis, 2012, 2(12): 2695-2699. |
35 | MILLINE R, MASSARA E P, PEREGO G, et al. Framework composition of titanium silicalite-1[J]. Journal of Catalysis, 1992, 137(2): 497-503. |
36 | NIPHADKAR P S, BHANGE D S, SELVARAJ K, et al. Thermal expansion properties of stannosilicate molecular sieve with MFI type structure[J]. Chemical Physics Letters, 2012, 548: 51-54. |
37 | MAL N K, RAMASWAMY A V. Hydroxylation of phenol over Sn-silicalite-1 molecular sieve: solvent effects[J]. Journal of Molecular Catalysis A: Chemical, 1996, 105(3): 149-158. |
38 | TANG B, DAI W, WU G, et al. Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides[J]. ACS Catalysis, 2014, 4(8): 2801-2810. |
39 | NEMETH L, MOSCOSO J, ERDMAN N, et al. Synthesis and characterization of Sn-beta as a selective oxidation catalyst[J]. Studies in Surface Science & Catalysis, 2004, 154(4): 2626-2631. |
40 | XIA C, LIU Y, LIN M, et al. Confirmation of the isomorphous substitution by Sn atoms in the framework positions of MFI-typed zeolite[J]. Catalysis Today, 2018, 316: 193-198. |
41 | BERMEJO-DEVAL R, GOUNDER R, DAVIS M E. Framework and extraframework tin sites in zeolite beta react glucose differently[J]. ACS Catalysis, 2012, 2(12): 2705-2713. |
42 | FEJES P, NAGY J B, KOVÁCS K, et al. Synthesis of tin(IV) silicalites (MFI) and their characterization A Mössbauer and MAS NMR spectroscopy study[J]. Applied Catalysis A: General, 1996, 145(1/2): 155-184. |
43 | BERMEJO-DEVAL R, ASSARY R S, NIKOLLA E, et al. Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 9727-9732. |
44 | BARE S R, KELLY S D, SINKLER W, et al. Uniform catalytic site in Sn-β-Zeolite determined using X-ray absorption fine structure[J]. Journal of the American Chemical Society, 2005, 127(37): 12924-12932. |
45 | 王幸宜. 催化剂表征[M]. 上海:华东理工大学出版社,2008: 1. |
WANG Xingyi. Catalyst characterization[M]. Shanghai: East China University of Technology Press, 2008: 1. | |
46 | CHO H J, CHANG C C, FAN W. Base free, one-pot synthesis of lactic acid from glycerol using a bifunctional Pt/Sn-MFI catalyst[J]. Green Chemistry, 2014, 16(7): 3428-3433. |
47 | PELMENSCHIKOV A G, SANTEN R A VAN, JANCHEN J, et al. Acetonitrile-d3 as a probe of Lewis and Brönsted acidity of zeolites[J]. The Journal of Physical Chemistry, 1993, 97(42): 11071-11074. |
48 | BORONAT M, CONCEPCIÓN P, CORMA A, et al. Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimization by the combination of theoretical and experimental studies[J]. Journal of Catalysis, 2005, 234(1): 111-118. |
49 | WICHTERLOVÁ B, TVARŮŽKOVÁ Z, SOBALÍK Z, et al. Determination and properties of acid sites in H-ferrierite: a comparison of ferrierite and MFI structures[J]. Microporous and Mesoporous Materials, 1998, 24(4/5/6): 223-233. |
50 | ROY S, BAKHMUTSKY K, MAHMOUD E, et al. Probing Lewis acid sites in Sn-Beta zeolite[J]. ACS Catalysis, 2013, 3(4): 573–580. |
51 | 徐如人, 庞文琴, 于吉红. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
XU Ruren, PANG Wenqin, YU Jihong. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004. | |
52 | MAL N K, RAMASWAMY V, RAJAMOHANAN P R, et al. Sn-MFI molecular sieves: synthesis methods, 29Si liquid and solid MAS-NMR, 119Sn static and MAS NMR studies[J]. Microporous Materials, 1997, 12(4/5/6): 331-340. |
53 | CHANG C C, WANG Z, DORNATH P, et al. Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars[J]. RSC Advances, 2012, 2(28): 10475-10477. |
54 | DEVRIESE L I, MARTENS J A, THYBAUT J W, et al. A new methodology to probe shape selectivity in porous adsorbents[J]. Microporous & Mesoporous Materials, 2008, 116(1/2/3): 607-613. |
55 | WANG X, ZHANG X, WANG Y, et al. Investigating the role of zeolite nanocrystal seeds in the synthesis of mesoporous catalysts with zeolite wall structure[J]. Chemistry of Materials, 2011, 23(20): 4469-4479. |
56 | ZHANG X, LIU H, YEUNG K L. Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth[J]. Materials Chemistry & Physics, 2006, 96(1): 42-50. |
57 | XU W, DONG J, LI J, et al. A novel method for the preparation of zeolite ZSM-5[J]. Journal of the Chemical Society, Chemical Communications, 1990 (10): 755-756. |
58 | DIJKMANS J, GABRİËLS D, DUSSELIER M, et al. Productive sugar isomerization with highly active Sn in dealuminated β zeolites[J]. Green Chemistry, 2013, 15(10): 2777-2785. |
59 | HAMMOND C, CONRAD S, HERMANS I. Simple and scalable preparation of highly active Lewis acidic Sn-β[J]. AngewandteChemie International Edition, 2012, 51(47): 11736-11739. |
60 | JIN J, YE X, LI Y, et al. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances[J]. Dalton Transactions, 2014, 43(22): 8196-8204. |
61 | WOLF P, VALLA M, NUNEZ-ZARUR F, et al. Correlating synthetic methods, morphology, atomic-level structure and catalytic activity of Sn-β catalysts[J]. ACS Catalysis, 2016, 6(7): 4047-4063. |
62 | CHEN L H, LI X Y, ROOKE J C, et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. Journal of Materials Chemistry, 2012, 22(34): 17381-17403. |
63 | 彭鹏, 张占全, 王有和. 多级孔分子筛的制备与催化应用[J]. 化学进展, 2013, 25(12): 2028-2037. |
PENG Peng, ZHANG Zhanquan, WANG Youhe. Preparation and catalytic application of multi-porous molecular sieves[J]. Progress in Chemistry, 2013, 25(12): 2028-2037. | |
64 | DAPSENS P Y, MONDELLI C, JAGIELSKI J, et al. Hierarchical Sn-MFI zeolites prepared by facile top-down methods for sugar isomerisation[J]. Catalysis Science & Technology, 2014, 4(8): 2302-2311. |
65 | JINKA K M, LEE S C, PARK S E, et al. Microwave synthesized mesoporous tin MFI as efficient catalyst for Baeyer-Villiger oxidation of cyclic ketones[J]. Studies in Surface Science and Catalysis, 2008, 174: 1187-1190. |
66 | CHO H J, DORNATH P, FAN W. Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars[J]. ACS Catalysis, 2014, 4(6): 2029-2037. |
67 | XIAO F S, WANG L, YIN C, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie International Edition, 2006, 118(19): 3162-3165. |
68 | CORMA A, DOMINE M E, VALENCIA S. Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite[J]. Journal of Catalysis, 2003, 215(2): 294-304. |
69 | ROMÁN-LESHKOV Y, MOLINER M, LABINGER J A, et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition, 2010, 49(47): 8954-8957. |
70 | LEW C M, RAJABBEIGI N, TSAPATSIS M. Tin-containing zeolite for the isomerization of cellulosic sugars[J]. Microporous and Mesoporous Materials, 2012, 153: 55-58. |
71 | TAARNING E, SARAVANAMURUGAN S, SPANGSBERG H M, et al. Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem, 2009, 2(7): 625-627. |
72 | CORMA A, NEMETH L T, RENZ M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature, 2001, 412(6845): 423. |
73 | CORMA A, RENZ M. Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbonyl-ene reaction[J]. Chemical Communications, 2004 (5): 550-551. |
74 | DE VYVER S VAN, ODERMATT C, ROMERO K, et al. Solid Lewis acids catalyze the carbon-carbon coupling between carbohydrates and formaldehyde[J]. ACS Catalysis, 2015, 5(2): 972-977. |
75 | DAI W, WANG C, TANG B, et al. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides[J]. ACS Catalysis, 2016, 6(5): 2955-2964. |
76 | PARULKAR A, JOSHI R, DESHPANDE N, et al. Synthesis and catalytic testing of Lewis acidic nano-MFI zeolites for the epoxide ring opening reaction with alcohol[J]. Applied Catalysis A: General, 2018, 566: 25-32. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |